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Abstract—We propose the first automated approach to estimate
the emotional valence of infants from their facial behavior. We use
the state-of-the-art transformer-based video masked autoencoder
(VideoMAE) that is pre-trained on a large video dataset as a
backbone, and finetune it on two large, well-annotated infant
video datasets (SIBSMILE and MODELING). To augment the
limited data, we propose a novel video temporal augmentation
method called Stochastic and Strided Temporal Sampling (SSTS).
We demonstrate the effectiveness of our approach for infant
valence estimation by achieving 0.671 Concordance Correlation
Coefficient (CCC) on SIBSMILE and MODELING. The ex-
periments show that SSTS remarkably accelerates the training
speed by 8 times while gaining the best valence estimation
performance. Lastly, we suggest that face detection and cropping
(coarse registration) is a promising alternative to landmark-based
registration (i.e. fine registration) in data pre-processing when
accurate infant facial landmark detectors are inaccessible.

Index Terms—infant emotional valence estimation, facial ex-
pression recognition, video transformers

I. INTRODUCTION

Facial expression recognition, as an integral part of affective
computing research, has significantly advanced over the past
10 years [1]–[5] thanks to the progress in deep learning. Auto-
mated analysis of affect and emotion from facial expressions
has various applications, such as detecting the severity of
mental disorders [6], improving human-robot interactions [7],
and enhancing user experience in virtual reality environments
[8]. There are two major approaches to modelling facial
expressions of emotions according to psychological research:
categorical theory [9] and dimensional theory [10]. The former
categorizes emotions into a set of distinct states, whereas
the latter views emotions as points in a continuous space,
defined by valence and arousal. The dimensional theory is
currently gaining more popularity as it takes the intensity of
the actions into account in addition to their presence, and
allows for a more nuanced understanding of emotional states.
More specifically, valence estimation in dimensional theory
aims to evaluate the degree of positive or negative affect in an
emotional state.

Recently, emotional valence estimation from facial expres-
sions has been investigated for adults. For example, Face-
BehaviorNet [11] and FATAUVA-Net [12] have shown good
performance on Aff-Wild [13] and Aff-Wild2 [14] datasets
to estimate the valence in the adult faces. However, research

on valence estimation in infants is still missing. Considering
that detecting facial affect plays a critical role in monitoring
infant health and development, we propose an approach to
automatically estimate valence in infant faces using two large
video datasets: SIBSMILE and MODELING. Arousal is not
considered in this paper because the above two datasets do not
yet provide corresponding annotations.

Video-level analysis of facial expressions is more informa-
tive than frame-level analysis since subtle actions may not be
perceived when motion information is missing and temporal
context provides additional information to detect facial actions
[15]. On the other hand, video understanding is much more
challenging than image understanding as it requires modeling
the temporal dynamics and demands larger amounts of train-
ing data. We finetune the state-of-the-art video transformer
VideoMAE [16] that is pre-trained on large video databases
using SIBSMILE and MODELING for the task of infant
valence estimation. The impressive results demonstrate the
effectiveness of VideoMAE, as well as verify the importance
of pre-training.

As training deep video networks requires an extensive
amount of samples, data augmentation has been widely used
for alleviating data scarcity. Video data augmentation can
further exploit temporal augmentation by randomly cropping a
segment [16], [17] or sampling frames with a stride [18], [19]
on account of the high redundancy in the time dimension.
In the databases we introduce, each video sample has a one-
second fixed duration, which differs from the diverse temporal
length in other video datasets [20]–[22]. Thus, we propose
Stochastic and Strided Temporal Sampling (SSTS) for valance
estimation from videos. SSTS greatly enlarges the diversity of
training samples and remarkably accelerates the training speed
by 8x on SIBSMILE + MODELING while achieving the best
performance of CCC=0.671.

Lastly, face registration is a commonly used pre-processing
step in facial expression recognition in adults. It makes
network training easier by aligning the input faces with a
template face, typically based on the detected facial landmarks
[15]. However, infant faces have different proportions, fewer
wrinkles, and less texture compared to adults [23]. Therefore,
facial landmark detectors trained on adults do not generalize
well to infants, which may lead to incorrect alignment of
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infant faces. As there is no publicly available model for infant
face landmark detection that is trained and evaluated on large
infant databases, we recommend coarse registration as an
alternative to fine registration because the former does not
rely on landmark detection. Our experiments show that coarse
registration achieves comparable performance to fine registra-
tion on SIBSMILE and MODELING but has the advantage of
not requiring a landmark detector.

Overall, our contributions in this paper are threefold:
• We automatically estimate emotional valence in infant

faces for the first time in the literature on two large,
well-annotated infant databases using VideoMAE which
is pre-trained on large video datasets and yields strong
performances.

• We propose a video temporal augmentation method for
the facial valence estimation task, demonstrating good
efficiency and flexibility.

• We empirically show that coarse registration is a promis-
ing pre-processing method for automated valence esti-
mation in the absence of accurate infant facial landmark
detectors that can provide fine registration.

II. RELATED WORK

A. Facial Expression Recognition

The vast majority of research on facial expression recogni-
tion focuses on adults and can be grouped into three categories.
The first group of works follows a categorical approach and
aims to recognize the six universal expressions [2], [24], [25],
including anger, fear, sadness, disgust, surprise, and happiness.
The second group focuses on detecting the facial action
units, which are the actions of the individual or a group of
facial muscles, described in the Facial Action Coding System
(FACS) [26]. These action units can describe complex facial
expressions. Recently, several approaches have been proposed
that focus on several aspects of AU detection including cross-
domain detection [3], dynamics of actions [4], [5], and region-
based detection [27], [15]. The third group of works considers
dimensional affect analysis to understand human emotions
where the arousal axis indicates the level of emotional ac-
tivation, and the valence axis measures the level of pleasure
[13]. Thanks to the advances in deep learning, many modern
neural networks have been developed for automated valence
and arousal estimation. Among them, FaceBehaviorNet [11]
and FATAUVA-Net [12] present good performance on the
datasets Aff-Wild [13] and Aff-Wild2 [14].

However, automated facial expression analysis in infants
is extremely rare. Although a recent work [23] introduced
an automated action unit detector in infants, the research on
automated estimation of emotional valence from infant facial
expressions is still missing. To fill this gap, we delve into the
infant facial valence estimation with the state-of-the-art video
transformers [16].

B. Video Data Augmentation

Data augmentation [28] has been largely used in various
computer vision tasks to extend the training data distribution.

Cropping, flipping, and color jittering [29], [30] are the
commonly applied image augmentation methods in both small
datasets [31] and large datasets [32]. Also, combing multiple
data samples [33], [34] was exploited to achieve Vicinal Risk
Minimization [35], and learning data augmentation strategies
from data were introduced in [36] [37]. In addition to aug-
mentation at the frame level, video augmentation introduces
variation in the time dimension. Due to the high redundancy of
two consecutive frames in a video, sparse temporal sampling
[18], [19] and subsampling short video clips [16], [17] are
often used for video classification. Specifically, given a raw
video with a variable number of frames, a common way of
augmentation is first randomly selecting a short, fixed-length
clip with f consecutive frames, then sparsely drawing 16 or
32 frames from this clip, and performing augmentation (e.g.
random cropping, color jittering) on each frame.

One reason for selecting a segment of the video is that
the videos in the public datasets [20]–[22] are of different
frame lengths (ranging from a few seconds to several min-
utes). Although this temporal sampling strategy facilitates
constructing training samples with a stable temporal change
rate, it also brings the issue of missing temporal information
of the original video. In contrast, datasets for facial valence
estimation do not have the variable duration problem since the
annotation is typically assigned second by second. Therefore,
our proposed augmentation method can model the complete
temporal dependencies by involving the head and tail frames
in a video clip.

C. Video Transformers

Recently, video transformers [38]–[40] have shown superior
performance compared to 3D ConvNets [41]–[43] as the video
feature learners due to their flexible self-attention mechanism
[44] and the reduced inductive bias in visual encoding. Yet,
transformers require large amounts of training data. When an-
notations are limited, supervised training may not be ideal. On
the other hand, initially pre-training the video transformers in a
self-supervised manner that aims to reconstruct the input from
itself and then fine-tuning them for downstream tasks largely
mitigates the demand for massive annotations. The masked
autoencoding strategy, which is based on removing parts of
input before feeding it into the model and reconstructing the
full input, has been successful in NLP [45]. This strategy has
been lately introduced into the computer vision on images [46]
and videos [16], outperforming contrastive learning methods
[47], [48]. VideoMAE [16] inherits the masking strategy
from Masked Autoencoder [49] and performs self-supervised
learning for video understanding, resulting in state-of-the-art
performances on various video benchmarks. In this paper, we
take advantage of the strength of VideoMAE in self-supervised
video feature learning and fine-tune the network for infant
valence estimation.



TABLE I
THE STATISTICS OF SIBSMILE AND MODELING

SIBSMILE MODELING

# subjects (infants) 25 16
# training video clips (training samples) 8252 4230
# training image frames 247k 127k
# testing video clips (testing samples) 2627 1375
# testing image frames 79k 41k
fps 30 30
frame resolution 720x486 1288x964

III. METHOD

A. Dataset and Pre-processing

To the best of our knowledge, there are no large, manu-
ally annotated, publicly available infant valence datasets. We
therefore first introduce two private infant facial expression
datasets: SIBSMILE and MODELING. The statistics of these
two datasets are shown in Table I. Similar to the MIAMI
dataset [50] [51], the SIBSMILE and MODELING datasets
record the interaction between mothers and six-month-old
infants in a Face-to-Face/Still-Face/Resume (FF/SF/RE) proto-
col [52]. There are 25 and 16 babies with spontaneous behavior
in SIBSMILE and MODELING, respectively. Training and test
folds do not contain the same subjects. The main differences
between SIBSMILE and MODELING are that the former is
more in the wild, has a lower resolution, and has larger out-
of-plane head motion. The annotations are generated by four
domain experts and we use the mean as the ground truth va-
lence score based on the high intraclass correlation coefficient
(ICC) of raters we evaluated on both the MODEILNG and
SIBSMILE datasets, where ICC(3, k)= 0.959 and ICC(3, k)=
0.936, respectively. Each second of video content is assigned
a valence value (ranging from -100 to 100). As a result, we
collected 10879 video clips (i.e. training samples and testing
samples) for SIBSMILE and 5605 clips for MODELING, with
each clip lasting one second. Fig. 1 presents the histograms
of valence annotations. The distributions are similar to that of
the Aff-wild2 dataset [14], in which most valence annotations
are distributed around the neutral expression.

Since the raw video clips are mostly noisy, pre-processing
is necessary before training the neural network. Following
[11] [12], we apply face detection, resizing, and cropping to
generate fixed-size frames. Additionally, [15] points out that
face registration is beneficial to facial expression recognition,
thus we conduct two different pre-processing methods. Coarse
registration is based on 2D face cropping and scaling, whereas
fine registration is based on 2D facial landmarking and align-
ment to a consensus shape.

a) Coarse registration: Considering the lack of publicly
available infant face detectors, we use the state-of-the-art
adult face detector [53] as an alternative. We find that this
detector has a good generalization on infant data even though
it has never been trained on infant faces. Throughout the pre-
processing, we first apply face detection to locate the infant
face in each frame. In the meantime, we remove the frames in
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Fig. 1. Histograms of valence annotations of SIBSMILE and MODELING
datasets

which the face occurrence probability is below the threshold of
0.8. Then, we crop the face area according to the coordinates
predicted by the face detector. Finally, each frame is resized
to 384×384 pixels. Note that we also remove the video clips
whose valid face frames are less than 24 because these clips
have very few detected infant faces. As a result, each training
clip in our SIBSMILE and MODELING datasets contains 24
to 30 face frames.

b) Fine registration: Since 3D face registration requires
a standard morphological model of infant faces which is
not available yet, we apply 2D face registration to infant
faces in SIBSMILE and MODELING. The difference in pre-
processing between coarse and fine registration is that fine
registration adds two more steps after face detection: face
landmark detection and similarity transformation. We employ
2D-FAN [53] network to detect 68 face landmarks [54].
Then, five landmarks (left eye center, right eye center, tip of
nose, left corner of mouth, right corner of mouth) are used
for a 2D similarity transformation [55]. The registration is
accomplished by linearly transforming the original face to a
template face [56] whose eye centers are horizontal and the
face is in the center of the image. Note that, unlike 3D face
registration that achieves a frontal face, 2D face registration
cannot eliminate out-of-plane motion and does not guarantee
a frontal face.



B. Data Augmentation - Stochastic and Strided Temporal
Sampling

High temporal redundancy is a general prior in video data
[57], therefore, sparsely sampling partial frames from the
raw video [18] is often adopted to reduce the computational
overload and yield the fixed size of input frames for neural
networks. Large video datasets (SSV2 [20], Kinetics-400 [21],
UCF101 [22]) have a variable duration and each clip lasts from
several seconds to minutes, so it is common to sample a seg-
ment in the clip for training to avoid computational explosion.
But this could be problematic since such segments can not
ensure capturing the complete temporal information. On the
contrary, each training clip in SIBSMILE and MODELING
has a fixed temporal duration (1 second).

We introduce our data augmentation method called Stochas-
tic and Strided Temporal Sampling (SSTS) for the video
valence estimation task. Fig. 2 and Alg. 1 show the procedure
of SSTS which consists of two steps: stochastic sampling and
strided sampling. Firstly, we randomly draw 24 frames from
the raw clip whose frame length N varies from 24 to 30 (Alg.
1 line 2). In this way, we not only introduce stochasticity
for the temporal sampling but also tackle the issue of the
variable length of the input clip (as VideoMAE requires a fixed
length of input frames). Subsequently, we propose the strided
sampling by introducing the stride parameter s. Specifically,
we select the starting frame index i at random and then sample
the remaining frames with the stride s, forming the training
sample with frame index [i, i + s, i + 2s...] (Alg. 1 line 4).
Again, stochasticity is involved in the strided sampling step.
For example, in Fig. 2, the orange frames correspond to a
training sample when i = 0 and s = 6 and the green frames
form a training sample with i = 1 and s = 6.

Algorithm 1 Stochastic and Strided Temporal Sampling
1: Initialize frame ind = [0, 1, ..., N ]
2: inds = np.random.choice(frame ind, 24, replace=False)
3: i ∼ [0, 1, ..., s− 1]
4: selected inds = range(i, 24, s)
5: final inds = inds[selected inds]
6: return final inds

We emphasize that the main advantages of SSTS are that
the training cost is tremendously reduced for video trans-
formers and s introduces flexibility to suit different dataset
volumes and model complexities. More details are given in
Section IV-B and Section IV-A. Except for SSTS, we also
apply RandAugment [58] to each frame, where color jittering,
rotation, shearing, and brightness are randomly and jointly
applied.

C. Network

We use VideoMAE [16] as the network since it is an
efficient feature learner and outperforms other modern video
transformers [38]–[40] and traditional 3D ConvNets [41]–[43]
in the tasks of video classification. The overall architecture
of our infant valence estimation system is shown in Fig. 3.

Given the SSTS-processed training clip, we first divide each
frame into 16 × 16 patches and encode each patch into
tokens. Then, self-attention is implemented among each patch
token, modelling the spatiotemporal dependencies. Following
VideoMAE [16], we use ViT-small [59] as the transformer
encoder, thus the spatial-temporal self-attention mechanism
in our model incorporates that in ViViT [38]. Note that
the computation increases quadratically with the number of
patches. Thereby, the length of input frames matters in both the
training and inference stages and this hyperparameter should
be selected carefully. Finally, the encoder outputs the valence
by mapping the latent features to the valence space with a
fully-connected layer.

D. Implementation Details

In this chapter, we describe the main hyperparameters we
used for experiments. Since training the video transformer
from scratch is difficult and requires an excessive amount of
training data, we consider finetuning the pre-trained Video-
MAE to estimate the valence. Concretely, we use VideoMAE
pre-trained on the SSV2 dataset [20] and finetune the model
until the convergence (max. 100 epochs). The size of the input
clip is [24/s, 3, 224, 224] where 24/s denotes the number of
frames and 224 determines the height and width of the clip.
All experiments are carried out with a batch size of 64 and
a learning rate of 0.0005 using a single Nvidia A100 GPU
on Pytorch 1.11 platform. Also, we apply exponential moving
average (0.999) and weight decay (0.05) [60] in the training
stage. Finally, the VideoMAE, denoted by fθ(·), is trained
with the mean squared error (MSE) between the predictions
and targets:

L(θ) =
1

n

n∑
i=1

(yi − fθ(xi))
2 (1)

E. Evaluation Metric

Following [14], the main metric we use for evaluating the
valence estimation performance is Concordance Correlation
Coefficient (CCC) [61] which measures the agreement be-
tween the targets and network predictions. The value of CCC

Fig. 2. A diagram of our Stochastic and Strided Temporal Sampling. Figure
best viewed in color.



Fig. 3. The architecture of our infant valence estimation system

ranges in [−1, 1] and the upper bound indicates the best
performance. CCC is computed by:

ρc =
2sxy

s2x + s2y + (x̄− ȳ)2
(2)

where sx and sy correspond to the variances of the target
valence x and predicted valence y, respectively. x̄ and ȳ are the
means and sxy is the covariance between x and y. Note that,
CCC is substantively identical to an absolute agreement ICC.
As an auxiliary criterion, the root-mean-square error (RMSE)
is also used to measure the average Euclidean distance between
x and y. The upper bound of RMSE is 200 in this paper
as the infant valence varies in [−100, 100]. We notice that
the variance of each evaluated CCC/RMSE is small and can
be ignored. Thus we only report a single value of these two
metrics. The majority of the experiments are conducted on the
composite dataset SIBSMILE + MODELING, since training
the video transformer is data-hungry.

IV. RESULTS

A. Efficient Training with SSTS

We analyze the effect of our proposed SSTS under different
stride s on the composite dataset SIBSMILE + MODELING
which contains 12482 training clips and 4002 testing clips.
We train all models until convergence (max. 100 epochs) and
compute both CCC and RMSE on the testing set. Note that
s = 1 means using the entire 24 frames for training, which
is regarded as the baseline. We refer to s ⩾ 2 as the groups
trained with our SSTS method.

The results in Table II show that all models (except for
s = 12 with cropping) trained with SSTS outperform the
baseline in both CCC and RMSE metrics, regardless of the pre-
processing method being coarse or fine registration. Compared
with the baseline s = 1, using SSTS with s = 6 (i.e. the
number of input frames is 4) not only obtains the best CCC
and RMSE, but also accelerates the training stage by 8x,
showing significant training efficiency. When s reaches 12,
SSTS can even speed up the training by 11x while maintaining
a competitive CCC and RMSE.

We argue the reason why s = 6 achieves the best per-
formance on infant valence prediction is that the input of 6
frames best matches the temporal redundancy in the dataset
SIBSMILE + MODELING. Intuitively, the more redundancy

of the video clip, the larger s we can use. Given the fixed
model complexity, a big s would bring about the information
loss in the time dimension, and a small s will result in
difficulties in model training or underfitting. This observation
leads to another good property of our SSTS method: it can be
adapted to different datasets and networks by simply searching
for the optimal s within a small range. However, for facial
valence estimation tasks on videos in the 24-30 fps range, we
expect s = 6 to work well.

B. Ensemble Inference with SSTS

In this section, we discuss ensemble inference for video
valence estimation. Similar to the concept of Ensemble Learn-
ing [62], we reduce the prediction variance by averaging the
multiple predictions when using the strided temporal sampling
method (SSTS). More specifically, we receive s predictions
[y1, y2, ..., ys] given a testing clip. Then, the final prediction
ŷ is computed by ŷ =

∑s
i=1 yi/s. All the results in Table II

are computed by this ensemble inference strategy.
We now compare the difference between ensemble inference

and single inference, in which the latter means ŷ is a randomly
selected sample in the prediction sequence [y1, y2, ..., ys]. We
measure the performance of these two inference methods
on the dataset SIBSMILE, MODELING and SIBSMILE +
MODELING with s = 6 in all experiments. The results are
presented in Table III, from which we can see that ensemble
inference surpasses single inference in all three datasets and
in both coarse and fine registration pre-processing settings.
Especially in the dataset MODELING processed by coarse
registration, ensemble inference leads to the most CCC gain,
where the CCC increases from 0.683 to 0.732. The RMSE
is also improved by ensemble inference in all experimental
settings.

It is worth pointing out that learning the infant valence on
MODELING dataset is easier than the learning on SIBSMILE
dataset since the former has a larger resolution and a higher
frequency of capturing the frontal faces of babies. This ex-
plains the performance gap on the dataset SIBSMILE and
MODELING in Table III.

C. Stochasticity of SSTS

In our proposed SSTS method, both stochastic sampling and
strided sampling steps involve stochasticity (see Fig. 2). To
analyze the effect of randomness in SSTS, we design the SSTS



TABLE II
OBTAINED CONCORDANCE CORRELATION COEFFICIENT (CCC), ROOT MEAN SQUARE ERROR (RMSE) AND TRAINING TIME ON SIBSMILE +

MODELING USING SSTS WITH DIFFERENT STRIDES (S)

Stride (s) s=1 (baseline) s=2 s=3 s=4 s=6 s=8 s=12
Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine

CCC 0.630 0.631 0.668 0.647 0.644 0.633 0.648 0.643 0.671 0.667 0.635 0.667 0.621 0.659
RMSE 25.35 25.33 24.09 24.43 25.02 24.44 25.04 24.31 23.68 23.86 24.98 24.23 25.45 23.95
Training time
(min) 946 423 292 223 160 123 85

TABLE III
CONCORDANCE CORRELATION COEFFICIENT (CCC) AND ROOT MEAN

SQUARE ERROR (RMSE) WITH SINGLE AND ENSEMBLE INFERENCE

Coarse Registration Fine Registration

Single Ensemble Single Ensemble

SIBSMILE CCC 0.605 0.61 0.633 0.643
RMSE 30.21 30.08 28.55 28.41

MODELING CCC 0.683 0.732 0.712 0.724
RMSE 17.08 16.14 16.52 16.48

SIBSMILE +
MODELING

CCC 0.633 0.671 0.663 0.667
RMSE 25.94 23.68 24.27 23.86

without stochasticity by always selecting the first 24 frames
in the stochastic sampling step and fixing the starting frame
as 1 in the strided sampling step. Then we compare its per-
formance with standard SSTS on the benchmark SIBSMILE
+ MODELING with s = 6. The results of Table IV highlight
the importance of stochasticity of SSTS as the CCC drops sig-
nificantly from 0.671 to 0.619 in the coarse registration group
and drops from 0.676 to 0.653 in the fine registration group.
In addition, randomness can greatly enhance the diversity of
training samples, so the coarse registration group, which relies
more heavily on diversity, drops more than the fine registration
group after losing stochasticity.

D. Coarse vs. Fine Face Registration

Coarse and fine face registration are the two commonly
used pre-processing methods for facial expression recognition.
We now analyze their effect on infant valence estimation.
Table II summarizes the performances of these under various
strides of SSTS. When the stride s ⩽ 6, coarse registration
generally achieves better results than fine registration. The
biggest gap occurs in the group of s = 2 where the CCC
of coarse registration is 0.668 and fine registration receives

TABLE IV
CONCORDANCE CORRELATION COEFFICIENT (CCC) AND ROOT MEAN

SQUARE ERROR (RMSE) USING WITH SSTS AND WITHOUT
STOCHASTICITY

Coarse Registration Fine Registration

SSTS No Stochasticity SSTS No Stochasticity

CCC 0.671 0.619 0.676 0.653
RMSE 23.68 25.63 23.86 24.29

0.647 of CCC. On the contrary, fine registration outperforms
coarse registration in the settings of s = 8 and s = 12
(i.e. the number of input frames is 3 and 2, respectively).
Our explanation for this phenomenon is that face cropping
introduces more spatial variations, which help learn a robust
network but require a relatively large number of input frames.
On the other hand, landmark-based alignment constrains the
position of face features learned by the network, hence the
network can be trained using a small number of input frames,
but at the risk of being sensitive to the adversarial samples.

Another reason why fine registration performs worse than
coarse registration (when s ⩽ 6) is that the accuracy of fine
registration relies on the performance of the face landmark
detection model. In this paper, we use the face alignment
network trained on adult faces to get infant face landmarks
due to the lack of public infant face alignment datasets
or models validated on large infant datasets. Based on the
observation that our employed face landmark model makes
poor predictions occasionally, we believe that a custom infant
face landmark detector would contribute to the performance
of face registration and valence estimation to some extent.
However, considering that annotating the infant face landmarks
and training the network are expensive, coarse registration is
a good alternative to fine registration in the scenario of infant
valence estimation.

E. Pre-training Is Necessary
To investigate the importance of pre-training for VideoMAE

in the downstream tasks, we also train VideoMAE from scratch
with s = 6 on the SIBSMILE + MODELING dataset and
compare its performance with the model pre-trained on the
SSV2 dataset [20]. The results on Table V demonstrate that the
video transformer without pre-training on large datasets fails to
learn the infant valence by showing −0.007 and −0.004 CCC
(the zero CCC means no correlation between predictions and
targets). It is worth pointing out that the large dataset SSV2
contains generic human action clips (e.g., playing basketball)
and most videos do not involve human faces. Even under
this great task difference, pre-training on a large-scale dataset
is still vital in infant valence estimation. We believe that
pre-training VideoMAE on large face datasets could further
improve the performance of infant valence prediction and it is
an interesting direction for future work.

F. Generalization
To test the generalization of the VideoMAE trained on

infant valence estimation task, we implement the cross-domain



TABLE V
CONCORDANCE CORRELATION COEFFICIENT (CCC) AND ROOT MEAN

SQUARE ERROR (RMSE) WITH AND WITHOUT PRE-TRAINING

Coarse Registration Fine Registration

No pre-training Pre-training No pre-training Pre-training

CCC -0.007 0.671 -0.004 0.667
RMSE 33.78 23.68 33.61 23.86

TABLE VI
OBTAINED CONCORDANCE CORRELATION COEFFICIENT (CCC) FOR

CROSS-DOMAIN GENERALIZABILITY

Coarse Registration Fine Registration

train on ⇒
test on ⇓ SIBSMILE MODELING SIBSMILE MODELING

SIBSMILE – 0.193 – 0.089
MODELING 0.577 – 0.746 –

training and inference based on SIBSMILE and MODELING
datasets. Table VI presents the CCC results under stride s = 6.
It is clear that the model trained on SIBSMILE performs well
on the MODELING dataset with a 0.577 CCC score using
coarse registration and a 0.746 CCC score via fine registration.
By contrast, the testing on SIBSMILE using the model trained
on MODELING is unsatisfactory. There can be two reasons
for this phenomenon: First, SIBSMILE has more data samples
than MODELING. Secondly, the head pose in SIBSMILE
is more diverse than that in MODELING. Models trained
with small databases containing mostly frontal faces cannot
generalize well to more in-the-wild databases.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the infant valence estima-
tion problem and demonstrate the effectiveness of using a
pre-trained VideoMAE in this problem. Correspondingly, we
propose the temporal augmentation method SSTS to speed
up the network training and improve the valence estimation
performance. Finally, we suggest using coarse registration via
face cropping in the pre-processing stage when an accurate
face landmark detection model is not available. Regarding
future work, the impact of the precise infant face registration
model and the model pre-training using face data on infant
expression recognition are two questions worth studying.
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