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Abstract— Analysis of kinship from facial images or videos is
an important problem. Prior machine learning and computer
vision studies approach kinship analysis as a verification or
recognition task. In this paper, first time in the literature,
we propose a kinship synthesis framework, which generates
smile videos of (probable) children from the smile videos of
parents. While the appearance of a child’s smile is learned
using a convolutional encoder-decoder network, another neural
network models the dynamics of the corresponding smile. The
smile video of the estimated child is synthesized by the combined
use of appearance and dynamics models. In order to validate
our results, we perform kinship verification experiments using
videos of real parents and estimated children generated by our
framework. The results show that generated videos of children
achieve higher correct verification rates than those of real
children. Our results also indicate that the use of generated
videos together with the real ones in the training of kinship
verification models, increases the accuracy, suggesting that such
videos can be used as a synthetic dataset.

I. INTRODUCTION

Analysis of kin relations from facial appearance has gained
popularity in recent years. This research topic has several
potential applications including missing child/parent search,
social media analysis, family album organization, and image
annotation [1]. Majority of prior studies in kinship analysis
focus on kinship verification [2], [3], [4]; given a pair of face
images, they try to identify whether these two have a kin
relationship or not. On the other hand, kinship recognition
studies aim to classify the type of kin relationship such as
Father-Daughter, Mother-Son, etc. [5].

In addition to general appearance of face, style and
appearance of expressions can also be inherited. Facial
expressions of congenitally blind and deaf phocomelian
children, who are incapable of sensing their relatives’ face
by touching, are shown to be similar to those of their
parents [6]. Moreover, [7] reports that a blind-born son,
who was abandoned by his mother two days after birth,
displays similar facial expressions with the biological mother.
Findings of [4] show that the use of expression dynamics
extracted from videos together with facial appearance leads
to more accurate kinship verification compared to employing
only facial appearance. Thus, although facial expressions
may comprise learned characteristics, it is clear that they
are at least partially inherited.

All of the previous studies approach the kinship analysis
as a verification or recognition problem. They model the

underlying relationship between a pair of images or videos,
yet, what these models learn is not visible to humans. In
this study, first time in the literature, we focus on kinship
synthesis, and generate facial expression videos of children
using the expression video of their parents. Kinship synthesis
has several benefits. First of all, since we synthesize videos,
the hereditary patterns inherited from parent to child can be
observed by humans. Observed patterns may even be useful
for genetic research. Secondly, there is only one kinship
video database (UvA-NEMO Smile Database [8]) available
for automatic kinship analysis, thus, our models can be used
to create synthetic kinship videos for further research. Lastly,
with the help of our model, people will be able to preview
how their (probable) future child may look like, as well as
seeing his/her smile as a video. Therefore, if a child, whose
appearance and expression dynamics are unknown, has been
missing for years, generated videos of him/her (based on
expressions of the parents) would be better references for
the search compared to pictures drawn by forensic artists.

This study is the very first exploration of synthesizing
facial images and expression videos for a kin relationship. By
transforming temporal dynamics and appearance of a given
subject, we generate a video of his/her probable children.
Furthermore, we show that the synthesized samples can be
used to improve the state of the art in kinship verification.

II. RELATED WORK

Most of the studies that analyze kinship from images
using machine learning and computer vision aim to solve
kinship verification problem. In their pioneering study, Fang
et al. [9] employ facial features such as skin color, posi-
tion and shape of face parts, and histogram of gradients
for kinship verification. Following that study, a number of
feature representations for this task are proposed/evaluated
such as DAISY descriptors [10], Spatial Pyramid LEarning-
based (SPLE) descriptors [11], Gabor-based Gradient Orien-
tation Pyramid (GGOP) [12], Self Similarity Representation
(SSR) [13], semantic-related attributes [14], SIFT flow based
genetic Fisher vector feature (SF-GFVF) [15], etc. Moreover,
a prototype-based discriminative feature learning (PDFL)
method has been proposed [16], and a gated autoencoder is
trained to characterize the similarity between faces of parents
and children for kinship verification [17]. Metric learning has
also been adopted for kinship verification problem in various
studies [1], [18], [19], [2]. Furthermore, a genetic similarity
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measure between child-parent pairs is learned in an ensemble
learning framework [20].

Beside one-to-one kinship verification, a number of studies
focus on verification or recognition of kin relations in family
images [5], [21], [22], [23], [3]. They predict whether a face
image has kin relation with multiple family members [21],
classify given a query face image which family it belongs
to [22], [23], perform tri-subject kinship verification using
the core parts of a family including mother-father pair to
verify the kinship of child [3], and recognize the exact
type of kin relation in family photos [5]. Recently, kinship
verification has also been approached using a pair of videos
rather than images, and it is shown that the use of expression
dynamics beside the appearance information improves the
verification accuracy [4]. However, no study thus far focuses
on the synthesis of kin images or videos of a given subject.

In terms of image synthesis, convolutional neural networks
have been found to be quite successful for a number of dif-
ferent tasks. For instance, in [24] a deep fully convolutional
neural network architecture, SegNet, for semantic pixel-wise
segmentation has been proposed. It consists of an encoder
network and a corresponding decoder network followed by
a pixel-wise classification layer. Decoder network maps the
low resolution encoder feature maps to full input resolution
feature maps for pixel-wise classification, where the output
of the network is the segmented input image. Similarly,
[25] uses a fully convolutional encoder-decoder network
for contour detection. In [26], a generative up-convolutional
neural network has been proposed to re-generate images of
objects for a given object style, viewpoint, and color.

In [27], a very deep fully convolutional encoding-decoding
framework has been proposed for image restoration. Its
encoding network acts as a feature extractor that preserves
the primary components of objects in the image while
eliminating the corruptions. Decoding network recovers the
details of image contents. The output of the network is the
denoised version of the input image. [28] designs a recurrent
encoder-decoder network to synthesize rotated views of 3D
objects. This model captures long-term dependencies along
a sequence of transformations with the help of the recurrent
structure. A different encoder-decoder architecture has been
proposed in [29] to modify facial attributes such as including
glasses or a hat on a given face image.

III. METHOD

In this paper, we propose to model relations of facial
appearance and dynamics between smiles of parent-child
pairs, and combine them to synthesize a smile of the
probable/future child of a given subject. To generate such
smile videos, we use a single smile video of reference
subjects as input (parent) data. To train our models, smile
videos of parent-child pairs are used. Our method requires
complete smiles that are composed of three phases, i.e., the
onset (neutral to expressive), apex, and offset (expressive to
neutral), respectively. We focus on (enjoyment) smile since
it is one of the most frequently performed facial expression.

(a) (b)

Fig. 1: (a) Normalized/cropped face image, the tracked
landmarks, and (b) the defined patches on eyes & eyebrows,
nose, mouth, and cheek regions. Note that the cheek patches
are only used for the kinship verification experiments

In this section, details of the proposed method are de-
scribed. The flow of the method is as follows. Facial land-
marks in regions of eyes & eyebrows, mouth and nose are
tracked during smile videos. Euclidean distances between
all possible pairs of the landmarks in each region are
computed to describe regional surface deformations. Using
these distances, the most similar frames of parent and child
videos are matched. Matched parent-child frames are then
fed as input-output pairs to a deep encoder-decoder network
to model the relation between facial appearances of parent-
child pairs. Another network is designed to learn the mapping
between smile dynamics of parent-child pairs based on the
extracted distance measures over time. Once both networks
are trained, smile dynamics of the most probable child
(based on the model) of a given subject (reference parent)
is estimated. Afterwards, smile dynamics of the reference
parent is transformed to that of the estimated child by re-
ordering frames of the parent video. The modified video
(smile) has the appearance of the given subject but the
temporal dynamics of the estimated child. Finally, smile
(video) of the estimated child is obtained by transforming the
appearance (of each frame) of the modified video to child’s
appearance through the deep encoder-decoder network.

A. Facial Landmark Tracking and Alignment

To normalize face images in terms of rotation and scale,
and to measure regional deformations in face, we track 77
facial landmarks. To this end, we use a state-of-the-art tracker
proposed by Jeni et al. [30]. Of the tracked landmarks, 28
are on facial boundary, 22 are on eyes & eyebrows, 9 are on
nose, and 18 are on mouth as shown in Fig. 1(a). The tracker
employs a combined 3D supervised descent method [31],
where the shape model is defined by a 3D mesh and the
3D vertex locations of the mesh [30]. A dense parameterized
shape model is registered to an image such that its landmarks
correspond to consistent locations on the face.

The tracked 3D coordinates of the facial landmarks �′ =
{�′X , �′Y , �′Z} are normalized by removing the global rigid
transformations such as translation, rotation and scale. Since
the normalized face is frontal with respect to the camera,
we ignore the depth dimension (Z) and represent each
facial point as � = {�X , �Y }. To shape-normalize facial
texture, we warp each face image (using piecewise linear
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Fig. 2: An illustration of learning temporal dynamics

warping) so as to transform the X and Y coordinates of the
detected landmarks �′ onto those of normalized landmarks
�. Obtained face images are then scaled by setting the inter-
ocular distance to 40 pixels, and cropped around the facial
boundary as shown in Fig. 1. As a result, each normalized
face image (including black pixels around facial boundary)
has a resolution of 128× 128 pixels.

B. Learning Temporal Dynamics

To model the temporal dynamics of a smile, we first need
to effectively describe the change in facial surface defor-
mations. Since previous research shows that facial landmark
displacements can successfully describe expression dynam-
ics [8], [32], we use a shape-based representation in our
study. To leverage regional properties, a separate descriptor
is computed for each of eyes & eyebrows, nose, and mouth
regions using the corresponding landmarks (see Fig. 1(a)).
Let �f,i,t denote the ith landmark (of Nf landmarks) in facial
region f = {eyes & eyebrows, nose,mouth} at frame t of a
given smile video. Then, a regional shape descriptor Sf,t for
frame t can be computed as a set of Euclidean distances
between all possible landmark pairs in region f :

Sf,t =

{
D ∈ R | D = ‖�f,j,t − �f,k,t‖, j > k,

j, k ∈ {1, 2, 3, . . . Nf}

}
,

(1)

where the length of the feature vector Sf,t is equal to
(
Nf

2

)
.

As Sf,t is a frame-based descriptor, temporal dynamics
of each facial region during a smile (of T frames) can be
represented by a

(
Nf

2

)
-dimensional time series with a length

of T . Nf equals 22 for f = eyes & eyebrows, 9 for f = nose,
and 18 for f = mouth. Since different dimensions (column
vectors) of each regional time series Sf are highly correlated,
dimensionality of Sf is reduced (for each region) to df using
the Principal Component Analysis (PCA) so as to retain 99%
of the variance. The resulting time series (for each region)
with reduced dimensionality is hereafter referred to as Rf .

Duration of smiles varies in length (T ). Yet, we need
to represent dynamics of varying-length smiles by a fixed-
length descriptor since we do not employ temporal models.

To this end, we fit a separate pth-degree polynomial to
each dimension of regional time series Rf . Notice that
each column vector (dimension) of Rf can be considered
as g(t) = yt, where ∀t ∈ L = {1, 2, . . . T}, and polyno-
mials can be fit to these functions. However, to fit better
polynomials, we normalize t to have zero mean and unit
variance, and obtain t̄. By preserving the feature values, our
new function becomes ḡ(t̄) = yt̄. Yet, such a normalization
causes the loss of the length information. Thus, to learn
the mapping between smile lengths of parents and children,
five length-related features are included in our feature set,
namely, length of the time series (T ), mean value of L (μL),
standard deviation of L (σL), 1−μL, and T −μL. Although
one of these features would be sufficient, we estimate a
separate length value (T ) from each, and use their average
as the final estimation to minimize the error. As a result, a
(p+ 1) . df + 5 dimensional feature vector is obtained for
each of eyes & eyebrows, nose, and mouth regions.

Once the features are computed, the mapping between
smile dynamics of parent-child pairs is learned using a neural
network with a single hidden layer as illustrated in Fig. 2.
Although temporal dynamics of a given time series may be
more efficiently learned by deep temporal models such as
Recurrent Neural Networks (RNNs), the limited sample size
of the video pairs in the UvA-NEMO Smile Database does
not allow us to use such models. To train the neural network,
we use the feature vectors obtained from parents as inputs
and the ones obtained from the corresponding children as
targets. We employ stochastic gradient descent (SGD) to
train our network with a learning rate of 0.05. During the
synthesis phase, we estimate the coefficients of df distinct
polynomials along with the length (T ) of the time series.
Using these estimates, regional time series (Rchild

f ) for the
corresponding child can be reconstructed.

C. Learning Appearance

1) Expression Matching: To learn an efficient appearance
transformation from parents’ face to that of children, we
propose to remove the influence of expression differences
between input (parent) and target (child) images. To this end,
we match the most similar facial expressions of parent-child
pairs (in the database) in terms of facial shape. Using the
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Fig. 3: An illustration of the convolutional encoder-decoder network that models the appearance transformation

regional per-frame shape descriptors Sf,t (see Section III-
B), a matching child frame t∗ can be obtained for each video
frame t of the corresponding parent as:

t∗f = argmin
t′∈{1,2,3,...,T ′}

‖Sparent
f,t − Schild

f,t′ ‖ (2)

where T ′ denotes the length (number of frames) of the child’s
video, and f shows the region that is used for matching.
Instead of matching frames based on average similarity of
different regions, we obtain a separate set of matched pairs
for each of the eyes & eyebrows, nose, and mouth regions.
Mouth region is also used to match whole face of parent-
child pairs since lip movements define the smile expression
as well as influencing the appearance of cheek and chin
regions. We match regional patches to better synthesize these
regions, and overlay them on the whole face.

2) Model: Once parent-child frames are matched, these
image pairs are fed as input-output pairs to a deep con-
volutional network to model the relation between facial
appearances of parent-child pairs as shown in Fig. 3. Our
model has an encoder network and a corresponding decoder
network. The encoder network contains three convolutional
layers followed by a fully connected layer. Each encoder in
the encoder network applies convolution operation using a
set of filter bank. We employ filters of 3 × 3 pixels in all
convolutional layers. After convolution, rectified linear unit
(ReLU) is applied to the output of the convolutional layers in
order to add non-linearity to the model. Our encoder network
contains two max-pooling layers which are applied after the
second and the third convolutional layers. We apply max-
pooling with a 2 × 2 window and stride 2 such that the
output of max-pooling layer is downsampled with a factor
of 2. Max-pooling summarizes the activated neurons from
the previous layer and enables translation invariance over
small spatial shifts in the input image. The final layer of
the encoding network is the fully connected layer that aims
to aggregate information obtained from all neurons from
the second max-pooling layer. The decoder network is the
symmetric of encoder network such that max-pooling layers
are replaced with max-unpooling layers. Note that, similar
to the encoder network, convolutional layers are followed by
ReLU in the decoder network.

We train four separate networks to learn the appearance
transformation of whole face, eyes & eyebrows region, nose
region, and mouth region. When we use facial regions to

train the network, we crop the corresponding region from
the normalized face image (of 128 × 128 pixels) as shown
in Fig. 1(b) and resize it to 64 × 64 pixels before feeding
to our network. Note that the matched-expression pairs of
whole face images are determined based on mouth shape
(Smouth). For training, SGD with a fixed learning rate of
0.01 is used, while mean squared error (MSE) is used as
the objective function. The encoder and decoder weights are
initialized from the uniform distribution over [−r, r] where
r = 1/(W .H .U), and W is the width and H is the height
of the filter. U denotes the number of input planes.

D. Expression Synthesis

This section explains how we use the models of dynamics
and appearance to generate a smile video of the estimated
child of a given subject. After computing the regional smile
dynamics of an estimated child, we transform the regional
dynamics of the parent (Rparent

f ) to that of the estimated child
(Rchild

f ) by re-ordering the frame sequence of the parent. Let
Iparent
f,sparent denote the image sequence of facial region f of the

parent, where sparent = [1, 2, . . . , Tparent] shows the sequence
of frame indices and Tparent is the number of frames. Recall
thatRf is a time series of per-frame shape featuresRf,t with
a reduced dimensionality of df (see III-B), where the qth

dimension ofRf,t can be shown asRf,t,q . Then, a re-ordered
sequence ŝ can be obtained ensuring that Rparent

f,ŝ � Rchild
f,schild

using Algorithm 1. Note that the first dimension of Rf

(Rf,s,q=1) can be thought as the amplitude signal of the
regional expression, since it explains the majority of the
variance of Sf . Thus, if the image sequence of the estimated
child displays expressions with higher amplitudes than that
of the parent, we reduce the values of Rchild

f such that the
regional amplitude of the estimated child can reach only 60-
100% of the maximum amplitude of parent’s expression.
This ratio is defined randomly (see Algorithm 1) to avoid
having the same maximum amplitude for smiles of the parent
and the estimated child. Length of Rchild

f is accordingly
reduced using bi-cubic interpolation to preserve the temporal
dynamics such as speed and acceleration of change in Rchild

f .
Afterwards, each frame of the re-ordered image sequence

Iparent
f,ŝ of the parent is transformed to that of the estimated

child using the learned convolutional model (Section III-C)
as visualized in Fig. 4. This procedure is repeated for each
of the eyes & eyebrows, nose, and mouth regions, and for
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Algorithm 1 Re-ordering the frame sequence of parent so
as to display the dynamics of the estimated child

Require: Rparent
f of size Tparent × df

Require: Rchild
f of size Tchild × df

Require: Explained ratio of Sf ’s variance (Λf,q) by each

dimension q ∈ {1, 2, . . . , df} of Rf (see Section III-B)

Ensure: Rparent
f,ŝ � Rchild

f,schild

1: mparent ← max(Rparent
f,sparent,1)

2: mchild ← max(Rchild
f,schild,1

)

3: if mchild > mparent then
4: rate ← mparent

mchild
× random([0.6 1], uniform)

5: Rchild
f ← rate×Rchild

f

6: Tchild ← �rate× Tchild�

7: Rchild
f ← resize(Rchild

f s.t. Tchild × df )

8: end if
9: for i = 1→ Tchild do

10: si ← argmin
j∈{1,2,...,Tparent}

∑df

k=1

(Rchild
f,i,k −R

parent
f,j,k )

2 .Λf,k

11: end for
12: ŝ← s

Fig. 4: Generation of the image sequence (whole face) of the
estimated child

the whole face. Once regional/whole-facial image sequences
of the estimated child are generated, we overlay regional
patches on the whole face image at each frame. In order
to have a smooth transition between regional textures, alpha
blending is used on/around the boundaries of regions. In this
way, the smile video of the estimated child is obtained.

IV. DATABASE

In order to synthesize videos of children from videos of
the corresponding parents, we employ the kinship set [4]
of the UvA-NEMO Smile Database [8]. The kinship dataset
has spontaneous and posed enjoyment smiles of the subject
pairs who have kin relationships. Ages of subjects vary from
8 to 74 years. Videos have a resolution of 1920 × 1080

TABLE I: Distribution of subject and (spontaneous) video
pairs in the the kinship database

Relation
Pairs

Parent Videos
Subject Video

Mother-Daughter 16 57 29
Mother-Son 12 36 21
Father-Daughter 9 28 16
Father-Son 12 38 21

All 49 159 87

pixels at a rate of 50 frames per second. In our experiments,
spontaneous video pairs of Mother-Daughter (M-D), Mother-
Son (M-S), Father-Daughter (F-D), and Father-Son (F-S)
relationships are used. Each of the subjects in the database
has one or two spontaneous enjoyment smiles. By using
different video combinations of each kin relation, 159 pairs
of spontaneous smile videos are obtained. Note that we also
employ the matched frames of posed smile pairs to model the
facial appearance but the corresponding posed videos are not
used in the test/evaluation stage. The number of subject pairs,
spontaneous video pairs, and spontaneous parent videos for
each kin relationship are given in Table I.

V. EXPERIMENTS & RESULTS

Our method aims to synthesize smiles of the most probable
children (rather than actual ones) of given subjects. Based
on the fact that even the appearances of siblings, except
maternal twins, are different, we cannot directly compare
synthesized and real children to evaluate our method. Thus,
for a quantitative assessment, we use the estimated smiles
to train a spatio-temporal kinship verification system, and
evaluate our method based on the obtained results. To this
end, we use a state-of-the-art method proposed by Dibek-
lioğlu et al. [4]. The method [4] extracts Completed Local
Binary Patterns from Three Orthogonal Planes (CLBP-TOP)
features [33] from the regions eyes & eyebrows, cheeks, and
mouth to describe regional appearance over time. Regional
features are concatenated as an appearance feature vec-
tor. To represent temporal dynamics of smiles, a set of
statistical descriptors are extracted from the displacement
signals of eyelids & eyebrows, cheeks, and lip corners, and
combined in a dynamics feature vector. After a feature
selection step, the temporal appearance and dynamics are
separately modeled by SVMs. The final verification result
is obtained through a decision level fusion. In the current
study, we slightly modify this method by extracting CLBP-
TOP features from the regions of eyes & eyebrows, nose,
and mouth & cheeks (see Fig. 1(b)). Additionally, we extract
dynamics features from the shape-based time series Rf for
regions of eyes & eyebrows, nose, and mouth. Other details
are kept same with those of the original method [4].

Kinship set of the UvA-NEMO Smile Database and the
generated smiles are used in our experiments. While kinship
pairs are used as positive samples, randomly selected pairs
that do not have a kin relation are used as negative samples.
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TABLE II: Accuracy (%) of using real and synthesized
temporal appearance in kinship verification

Training Set
Test Set

Real Synthesized

Real 63.14 61.89
Synthesized 59.37 65.41
Real + Synthesized 67.17 69.18

A separate verification model is trained for each of the M-D,
M-S, F-D, and F-S relations. Each experiment is repeated 10
times so as to use a different random set of negative sam-
ples each time. Average (over repeated experiments) of the
obtained mean (over different relations) correct verification
rates are reported. Both kinship verification and synthesis
experiments are conducted using a two-level leave-two-pair-
out cross-validation scheme. Each time two test pairs are
separated, the system is trained and parameters are optimized
using leave-two-pair-out cross-validation on the remaining
subject pairs.

For the synthesis of whole-facial and regional appearance
of the estimated children, we train separate appearance
transformation models for each kin relationship, i.e., M-D,
M-S, F-D, F-S. To model temporal dynamics, df is chosen as
4 for each facial region so as to retain 99% of the variance.
Degree of the polynomial fitting (for temporal dynamics)
is set to 5 since our preliminary experiments show that
polynomial degrees lower than 5 are limited to capture subtle
patterns of dynamics while higher degrees are quite sensitive
to noise, and could easily generate infeasible smile signals
with continuous exponential increase. Dynamics network is
trained using all kin relationships due to the limited number
of video pairs. To have a similar quality for the pairs of
real parent and estimated child during the verification exper-
iments on the synthesized videos, we train a convolutional
encoder-decoder network for reconstructing the input face
images. Frames of the parent videos are modified by this
network. In the remainder of this section, the results of our
experiments will be presented.

A. Assessment of the Synthesized Temporal Appearance

In this experiment, we only use the spatio-temporal fea-
tures (CLBP) extracted from the regions of eyes & eyebrows,
nose, and mouth (over videos) for kinship verification. To
evaluate the quality of the synthesized videos, we train three
different kinship verification models, i.e. using real videos,
using synthesized videos, and with their combined set. Each
of the trained models are then tested on the real and synthe-
sized samples. As shown in Table II, the temporal appearance
features extracted from the synthesized videos achieve an
accuracy of 65.41% when the verification model is trained
on the synthesized set, which is about 2.3% (absolute) higher
than that of the real video pairs when the model is learned on
real data. Besides, only 3.5% accuracy decrease is observed
for the synthesized videos if the system is trained on the real
video pairs. All these results clearly suggest the reliability

TABLE III: Accuracy (%) of using real and synthesized
temporal dynamics in kinship verification

Training Set
Test Set

Real Synthesized

Real 64.91 65.41
Synthesized 63.40 68.43
Real + Synthesized 69.18 70.44

TABLE IV: Accuracy (%) of the combined use of temporal
appearance and dynamics of real and synthesized videos in
kinship verification

Training Set
Test Set

Real Synthesized

Real 73.71 72.70
Synthesized 71.45 77.74
Real + Synthesized 78.49 80.25

of our proposed method. Our visual analysis also confirms
the realistic appearance of the synthesized face images (see
Fig. 5(a)). Furthermore, training the system by using real and
synthesized videos together, increases the accuracy for both
real (4%) and synthesized pairs (3.8%). Under this setting,
synthesized videos perform 2% better than real ones. These
findings show that indeed the obtained synthetic data can be
used to train a more accurate kinship verification system.

B. Assessment of the Synthesized Dynamics

Similar to the previous experiment, we conduct cross-
database experiments using real and synthesized video pairs
to evaluate the reliability of the estimated facial dynamics.
To this end, we only use dynamics features in the verification
model. As shown in Table III, estimated smile dynamics
performs slightly (1%) worse than the dynamics of real
smiles when the system is trained with real videos. Once we
use synthesized dynamics along with the real ones to train
the model, a 4.8% accuracy increase obtained for real pairs
compared to the model trained using solely real samples.
Moreover, synthetic samples perform better than real pairs
when the model is learned on the combined data. As in
the previous experiment, these findings show the efficacy
of our method as well as indicating the importance of using
synthetic data in addition to real samples during the training
of kinship verification models.

C. Combining Temporal Appearance and Dynamics

To assess the full performance of the synthesized videos
in kinship verification, we include both temporal appearance
and dynamics features in the verification system. As shown in
Table IV, when the system is trained solely on real samples,
the accuracy for real samples reaches 73.7% where the
accuracy for synthetic videos is only 1% less. Verification
accuracy for real pairs are enhanced by 4.8% (absolute)
by including the synthesized samples in the training set.
Moreover, synthesized videos perform better than the real
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Fig. 5: Samples of input (real) and output (synthesized) videos: (a) Key frames and (b) amplitude signals. Note that the
smile amplitude is defined as the first dimension of Rf=mouth

pairs under combined training. This finding suggests that
the generated videos of children may be more similar to
the parents than the real ones. Next, we visually analyze
the obtained videos to validate their quality. As shown in
Fig. 5, obtained facial images look quite realistic, and the
estimated smile dynamics are meaningful. Thus, we can
claim that the proposed method works effectively and it is
able generate smile videos of probable children of given
parents. Visual demonstration of the synthesis pipeline, and
samples of input/output videos can be viewed online1.

1http://visionlab.tudelft.nl/kinship-synthesis

D. Assessment of Different Facial Regions

In this experiment, we evaluate the reliability of different
facial regions in terms of temporal appearance and dynamics
features. To this end, we trained kinship verification models
using the combined set of real and synthetic data. Fig. 6
shows the correct verification rates of using dynamics and
temporal appearance of different regions. Results reveal
that, mouth (& cheek) region leads to a better verification
compared to other regions. This can be explained by the fact
that mouth (& cheek) region comprises a large facial area
that displays distinct appearance patterns of kinship as well
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Fig. 6: Accuracy of using temporal appearance and dynamics
of different facial regions in kinship verification

as providing most of the dynamic information during a smile.
Since nose region is not much affected by smile expression,
the use of nose dynamics performs only slightly better than
random prediction. Synthesized appearance and dynamics of
all regions, except eyes & eyebrows region, perform better
than those of real pairs. We can deduce from this finding that
our method cannot model the appearance and dynamics of
eyes & eyebrows region as accurate as those of other regions.

VI. CONCLUSION

First time in the literature, we have proposed a kinship
synthesis framework that is capable of generating smile
videos of probable children of given subjects. As well as
synthesizing images using a convolutional encoder-decoder
architecture, we model temporal dynamics of expressions,
and combine them to synthesize videos of estimated children.
We have quantitatively evaluated our synthesized videos in
a set of kinship verification experiments. Our results suggest
that (1) enhancing training set with synthetic data increases
the verification performance; and (2) our proposed method
can indeed generate realistic child videos that may even be
more similar to the corresponding parent than the real child.

As a future work, we aim to evaluate our method on other
facial expressions such as disgust and surprise. Due to data
limitations, our models rely solely on the data of a single
parent for the synthesis of the probable child. In case of
having sufficient data, a further research direction would be
to change our network architecture such that the appearance
and dynamics of the estimated child are learned from the
videos of both mother and father.
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[5] Y. Guo, H. Dibeklioğlu, and L. van der Maaten, “Graph-based kinship
recognition,” in ICPR, 2014, pp. 4287–4292.

[6] I. Eibl-Eibesfeldt, Human Ethology. New York: Aldine de Gruyter,
1989.

[7] G. Peleg, G. Katzir, O. Peleg, M. Kamara, L. Brodsky, H. Hel-
Or, D. Keren, and E. Nevo, “Hereditary family signature of facial
expression,” PNAS, vol. 103, no. 43, pp. 15 921–15 926, 2006.
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