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Abstract—Facial action unit (AU) detectors have performed well when trained and tested within the same domain. How well do AU
detectors transfer to domains in which they have not been trained? We review literature on cross-domain transfer and conduct
experiments to address limitations of prior research. We evaluate generalizability in four publicly available databases. EB+ (an
expanded version of BP4D+), Sayette GFT, DISFA and UNBC Shoulder Pain (SP). The databases differ in observational scenarios,
context, participant diversity, range of head pose, video resolution, and AU base rates. In most cases performance decreased with
change in domain, often to below the threshold needed for behavioral research. However, exceptions were noted. Deep and shallow
approaches generally performed similarly and average results were slightly better for deep model compared to shallow one. Occlusion
sensitivity maps revealed that local specificity was greater for AU detection within than cross domains. The findings suggest that more
varied domains and deep learning approaches may be better suited for generalizability and suggest the need for more attention to
characteristics that vary between domains. Until further improvement is realized, caution is warranted when applying AU classifiers
from one domain to another.

Index Terms—Cross-domain generalizability, facial action unit detection, transfer learning.
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1 INTRODUCTION

People communicate emotion, intentions, and physical
states using facial expressions. Automatic detection of facial
expressions is crucial in many areas: mental and physical
health, education, and human-computer interaction among
others. The most comprehensive method to annotate facial
expression is the anatomically based Facial Action Coding
System (FACS) [1], [2]. FACS action units (AU) alone or in
combinations can describe nearly all possible facial expres-
sions. Automatic detection of FACS action units has been an
active area of research [3], [4], [5].

Studies typically evaluate performance of AU detection
models by cross validating algorithms within independent
partitions of the same domain. A domain may consist of one
or more databases that are used in both training and testing.
In this way, classifiers are evaluated by how well they gener-
alize, or transfer, to unseen subsets of the domain in which
they were trained. Cross-validation within domains protects
against overfitting but cannot ensure generalizability to new
domains.

In many applications we are interested in applying AU
detectors to new domains. For instance, we might wish to
apply a classifier trained in posed facial expressions of a
single participant to spontaneous expressions of a group
of participants. For domain transfer, differences between
domains become relevant. Domains may differ in multiple
ways. These may include context (e.g., participants alone or
interacting with other participants), individual differences
(e.g., gender, ethnicity, and age), orientation to camera, non-
rigid head motion, lighting, video resolution, and base rates

and intensity of specific action units (that is, how frequently
and for how long they occur). All of these factors potentially
influence AU detection.

To evaluate state of the art in domain transfer of AU
detectors, we first review previous research. We distinguish
between cross-domain generalizability and fine-tuning and
identify factors that leave in question the generalizability
of AU detectors. These factors include lack of AU-specific
findings, differences in data sampling and performance
metrics, and relatively small numbers of subjects, which
can attenuate performance, These factors are reviewed in
Section 2.

Taking these factors into account, we then investigate
cross-domain generalizability using four databases that dif-
fer in context, individual differences among participants
(e.g., sex, age, and ethnicity), orientation to the camera, non-
rigid head motion, frequency and intensity with which vari-
ous action units occur, and other factors. These databases are
an expanded version of BP4D+ [6] (EB+), the Sayette Group
Formation Task (i.e. GFT below) [7], DISFA [8] and UNBC
Shoulder Pain Archive (SP) [9]. Two large well-annotated
databases EB+ and GFT are used to train separate models
and all of the four databases are used to test these models.

EB+ database involves inductions of varied emotions of
a participant interacting with an experimenter while GFT
involves social interaction among previously unacquainted
participants. Context in DISFA, unlike EB+ and GFT, is non-
social. No one other than the participant is present. In SP,
although an experimenter is present, they remain passively
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in the background. The stimulus (ice bath) is non-social.
AU base rates are higher in EB+ and GFT compared

to DISFA and SP but different from each other. In both
DISFA and SP the distribution of AUs and the correlation
among them present particular challenges. In DISFA, the
base rate of most AUs is low and limited to what occurs
in a film-watching paradigm. In SP, AUs are limited mostly
to those associated with pain; and the correlation among
AUs differs markedly from that of the other databases. In
SP, the appearance of AU 12 (oblique lip corner pull), for
instance, typically is modified by pain-related actions (e.g.,
the upward pull of AU 9 or 10 and lateral stretch of AU 20).
Such co-articulation effects along with the other differences
present multiple challenges to generalizability.

To ensure that findings are not classifier specific, we
use both deep and shallow approaches to AU detection.
For the deep approach, we use a multi-label convolutional
neural network; for the shallow approach we use the hand-
crafted features and support vector machine of Openface
[10]. Openface is a state-of-the-art shallow approach that
was trained to optimize AU detection performance. Be-
cause different test statistics quantify different aspects of
performance, we report a variety of metrics. These include S
score [11], [12], AUC, F1 (which is positive agreement when
comparing two methods) and negative agreement (NA).

In a further experiment, we investigate similarities and
differences in the salience of facial regions when generaliz-
ing between domains. In order to understand and interpret
at which facial regions classifiers look to detect specific
AUs, we generate occlusion sensitivity maps. We compare
occlusion sensitivity maps for within- and cross domain
AU detection. The findings reveal important differences
between within- and cross domain AU detectors.

An earlier version of this paper appeared as [13]. This
version differs in multiple respects. It expands the literature
review, investigates cross-domain generalizability using ad-
ditional databases, increases the scope of experiments, and
explores and visualizes AU-specific significant regions. The
paper is organized as follows: Section 2 reviews the limita-
tions in evaluating cross-domain generalizability and distin-
guishes between cross-domain generalizability and what is
referred to as fine-tuning. Section 3 presents the deep and
shallow approaches to investigate AU-specific cross-domain
transfer. Section 4 evaluates cross-domain generalizability
on two large and two smaller domains with a variety of
metrics that quantify different aspects of performance and
visualizes occlusion sensitivity maps. Section 5 discusses
our findings and suggests future directions.

2 RELATED WORK
2.1 Cross-domain studies
Action unit detection has been studied extensively for
nearly two decades [3], [4], [5]. Until recently, most ap-
proaches have used hand-crafted features. Examples in-
clude LBP [42], SIFT [43], [44], LGBP [45], HOG [46] and
LBP-TOP [47]. With the emergence of deep learning, CNN
methods have shown significant success for AU detection
[48], [49]. Except for studies listed in Table 1, almost all
work in AU detection has focused on within-domain per-
formance. For many purposes, however, we wish to apply

AU detectors learned in one domain to new domains. As
in the related field of speech recognition, the impact of AU
detection will be determined in large part by how well it can
perform reliably when applied to new domains.

Table 1 summarizes studies that evaluate cross-domain
AU detection. Some [37], [42] propose novel adaptation
approaches. Most test domain transfer without adaptation.
Jiang et al. [24] explicitly analyzed temporal dynamics of
facial actions using dynamic appearance descriptor Local
Phase Quantization from Three Orthogonal Planes (LPQ-
TOP). Koelstra et al. [25] proposed a method based on
nonrigid registration using free-form deformations to model
dynamics of facial texture in near-frontal-view face im-
age sequences for automatic AU detection. Li et al. [26]
proposed a knowledge-driven model for AU recognition,
which does not use training data and is learned from the
generic domain knowledge that governs AU behaviors. a
number of studies [27], [28], [29] designed AU detection
methods which benefit from facial expression labels when
AU annotations are limited. Wu et al. [30] proposed the
Constrained Joint Cascade Regression Framework for simul-
taneous AU detection and facial landmark detection. Tong et
al. [31] employed a dynamic Bayesian network (DBN) that
systematically accounts for the relationships among AUs
and their temporal evolutions for AU recognition. Among
the studies personalizing generic classifiers, Mohammadian
et al. [33] adapted the system to a new person using Se-
lective Style Transfer Mapping and Chu et al. [37] used
Selective Transfer Machine (STM) which attenuates person-
specific mismatches. Gehrig et al. [34] used kernel partial
least square regression for multi-label AU detection. Walecki
et al. [35] proposed a variable-state Conditional Random
Field model for dynamic facial expression recognition and
AU detection. Valstar et al. [38] applied a combination of
GentleBoost, support vector machines, and hidden Markov
models to encode AUs and their temporal activation mod-
els. Baltrusaitis et al. [39] applied person-specific neutral ex-
pression normalisation, used hand-crafted appearance and
geometric features to train SVM with multiple databases.
Eleftheriadis et al. [41] performed domain adaptation using
domain-specific Gaussian process experts for AU detection.
Among the deep approaches Ghosh et al. [32] trained a
multi-label convolutional neural network approach to learn
a shared representation between multiple AUs directly. Chu
et al. [36] used CNN to learn spatial features and LSTM to
learn temporal dynamics for AU detection. Zhao et al. [40]
combined deep region learning with multi-label classifica-
tion for AU detection. Comparisons among these studies
with respect to generalizability of specific AU detectors is
confounded by at least four factors.

One is the lack of AU specific cross-domain results.
While many studies [24], [25], [26], [27], [28], [29], [30] report
detailed within-domain results for each AU, AU-specific
cross-domain results are seldom reported. Cross-domain
results are limited to averages computed across all AUs.
Measures aggregated across multiple AUs mask AU-specific
findings.

Two, even when AU-specific results are reported, com-
parisons between studies are confounded by use of different
performance metrics. Some studies [36], [37], [38], [39], [40],
[41] use AU-specific frame-level F1s, others AUC [33], 2AFC
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TABLE 1: Studies reporting cross-database AU detection results. D1→D2 denotes that models are trained on domain D1

and tested with domain D2. The column titled AU specific represents whether the study reports AU specific cross-domain
performance (Yes) or average performance (No). Used evaluation metrics include 2AFC, AUC, F1, Classification Rate (CR),
Recall (RC), Precision (PR), Hamming Loss, Average positive recognition rate (APRR), Average false-alarm rate (AFAR).
Used databases include Cohn-Kanade (CK) [14], Extended Cohn-Kanade (CK+) [15], BP4D [16], UNBC Shoulder-Pain
Archive (SP) [9], MMI [17], DISFA [8], SEMAINE (SEM) [18], SAL [19], GFT [7], RU-FACS [20], GEMEP-FERA (G-FERA)
[21], ISL [22]. For more comprehensive review, see [23].

Study Databases Number of
subjects

Number of
sequences (s) / frames (f)

Number of
AUs AUs AU

specific Metrics

[24] MMI→CK
SAL→SEM

MMI (10)
SAL (10),

MMI (264 s), CK+ (55 s)
SAL (35 s), SEM (10 s) 15 Avg of 15 AUs

(not specified) No
2AFC,

F1
CR, RC, PR

[25] MMI→CK MMI (15) MMI (264 s)
CK (143 s) 18

1, 2, 4, 5, 6, 7, 9
10, 11, 12, 14, 15, 17

20, 24, 25, 27, 45
No F1, CR,

RC, PR

[26] CK→G-FERA
G-FERA→CK CK (>100) CK (8000 f)

G-FERA (5000 f) 8 1, 2, 4, 6, 7, 12,
15, 17 No F1

[27]

CK+, G-FERA,
SP, DISFA

(Train on one,
test on the rest)

CK+ (123),
G-FERA (7),

SP (25),
DISFA (27)

CK+ (593 s, 593*4 f),
G-FERA (87 s),

SP (200 s)
14

1, 2, 4, 5, 6, 7,
9, 10, 12, 15, 17,

20, 25, 26
No AUC,

F1

[28], [29] CK+→ISL ISL (7) ISL (7*19 s),
CK+ (327 s, 327 * 2 f) 13 1, 2, 4, 5, 6, 7, 9

12, 17, 23, 24, 25, 27 No Hamming L.,
F1

[30] CK+→SEM CK+ (210) CK+ (593 s, 593 f) 10 1, 2, 4, 5, 6, 7,
12, 17, 25, 26 No F1

[31] CK→MMI MMI (11),
CK (>100) MMI (54 s) 13

1, 2, 4, 5, 6, 7
9, 12, 15, 17,

23, 25, 27
Yes APRR,

AFAR

[32]

BP4D→CK+,
BP4D→DISFA,
DISFA→CK+,
DISFA→BP4D

CK+ (123),
DISFA (27),
BP4D (41)

CK+ (582 s),
DISFA (4845 f) 10 1, 2, 4, 5, 6, 9

12, 15, 17, 20 Yes ACC,
2AFC

[33] CK+→SP CK+ (123),
SP (25)

CK+ (593 s, 593 f),
SP (48,398 f) 6 4, 6, 7, 9,

10, 43 Yes AUC

[34] CK+→G-FERA,
G-FERA→CK+

CK+ (123),
G-FERA (10) CK+ (593 s CK+ ,593 f) 17

1, 2, 4, 5, 6, 7, 9
11, 12, 15, 17, 20
23, 24, 25, 26, 27

Yes 2AFC

[35] DISFA→G-FERA,
G-FERA→DISFA

DISFA (27),
G-FERA (7)

DISFA (32 s, 32*4000 f),
G-FERA (87 s) 8 1, 2, 4, 6, 12,

17, 25, 26 Yes CR
(Per seq)

[36] BP4D→GFT
GFT→BP4D

BP4D (41),
GFT (50)

BP4D (328 s, 146,847 f),
GFT (254,451 f) 12

1, 2, 4, 6, 7,
10, 12, 14, 15

17, 23, 24
Yes F1

[37] RU-FACS→G-FERA,
GFT→RU-FACS

RU-FACS (34),
G-FERA (7),

GFT (42)

G-FERA (87 s),
Ru-FACS (29 s, 180K f) ,

GFT (⇠302K f)
8 1, 2, 4, 6, 12,

14, 15, 17 Yes AUC,
F1

[38] MMI→CK ,
CK→MMI MMI (70) MMI (244 s),

CK (153 s) 16
1, 2, 4, 5, 6, 7,

9, 10, 12, 15, 20,
24, 25, 26, 27, 45

Yes F1

[39]
SEM, BP4D, DISFA

(Train on one,
test on the rest)

BP4D (41),
SEM (31),

DISFA (27)

BP4D (150K f),
SEM (93K f),

DISFA (130K f),
8

2, 12, 17 (all)
25 (DISFA→SEM),

1, 4, 6, 15
(DISFA→BP4D)

Yes F1

[40] BP4D→DISFA BP4D (41)
DISFA (27)

BP4D (328 s, 328*300 f)
DISFA (27 * 2400 f) 8 1, 2, 4, 6, 9,

12, 25, 26 Yes AUC,
F1

[41] BP4D→DISFA
DISFA→BP4D

DISFA (27)
BP4D (41)

Varies between
(10 - 500 f) 7 1, 2, 4, 6,

12, 15, 17 Yes AUC,
F1

[32], [34], or accuracy [32], [35]. These measures are not
interchangeable. Lack of standard metrics also undermines
comparisons of studies that report only average perfor-
mance across multiple AUs. Some report precision [24], [25]
while others report recall [24], [25] or Hamming loss [28],
[29]. Without fungible metrics, results between studies lack

comparability.

Three, comparisons between studies often are con-
founded by differences in the numbers of subjects, se-
quences, or frames sampled within common domains. Dif-
ferences in the sampling of frames are common. For in-
stance, two studies [31], [38] used CK to train classifiers and
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MMI to test them but used different numbers of subjects
(11 [31] and 70 [38], respectively) from MMI. Similarly, three
studies [32], [39], [40] used the same 41 subjects in BP4D to
train their model and the same 27 subjects of DISFA to test
it, but they used different frames. The number of frames
for testing in DISFA was 4845 [32], 130K [39] and 64K [40].
These confound comparisons between studies.

And four, classifiers often are trained on relatively small
databases, which impairs generalizability. Within-database
results can be low when the number of subjects is insuffi-
cient [50]. The same is likely true with respect to general-
izability across domains. To make strong inferences about
generalizability, relatively large numbers of subjects are
necessary in the training. Moreover, some databases may
yield greater genralizability than others. At minimum gen-
eralizability should be compared for at least two databases.

2.2 Studies performing fine-tuning on the new domain
Training a deep network on one domain and then fine-
tuning it in another domain has gained attention for AU
detection. Several studies [40], [48], [51], [52], [53] have
pre-trained models in BP4D and then fine-tuned them in
DISFA. The studies typically select the top-performing CNN
in BP4D to obtain face representations, fix convolutional
layers, and retrain fully connected layers in DISFA. Face
representations are learned on the source domain and un-
modified in the new domain. The mappings of facial repre-
sentations to AUs is fine-tuned using the new domain.

To accomplish fine-tuning, however, it is necessary to
have and use AU labels in the new domain, which violates
the independence of source and target domains. This as-
sumption is necessary to evaluate domain transfer. Several
studies have reported what they describe as cross-domain
findings [40], [52] when, in fact, AU detectors contaminated
by fine-tuning. Database independence is a necessary as-
sumption to evaluate domain generalizability.

In DISFA AUs are labelled on a 0-5 intensity scale, where
zero denotes that the AU did not occur, and 1-5 denotes
that the AU occurred at one of five intensity levels (A or
1 =trace, E or 5 =maximum intensity). Because DISFA was
scored only for intensity, it is necessary to apply a threshold
with which to define occurrence.

Table 2 shows thresholding strategies of studies that
have reported cross-domain or fine-tuning results on DISFA.
While the cross-domain studies define AU occurrence as
A level or higher, the ones reporting fine-tuning results
define them variously from A level to D level. While a case
may be made for defining occurrence at either A level or B
level (per the FACS manual), not all studies have followed
this practice. Some use a threshold of C or even D level.
While this practice may make AUs easier to detect (subtle
or even not so subtle ones may be ignored), comparability
with cross-domain findings and with the FACS manual are
lost. With the exception of the first BP4D [16], almost all
widely used databases use a threshold of B level to define
occurrence.

3 METHOD
To compare AU-specific within- and cross-domain transfer,
we use both deep and shallow approaches in two databases

TABLE 2: Thresholding strategies of studies reporting cross-
domain and fine-tuned AU detection results on DISFA.

Study Thresholding Cross-domain / Finetuned

[35] A-level Cross-domain
[39] A-level Cross-domain
[41] A-level Cross-domain
[32] A-level Cross-domain
[27] Not reported Cross-domain
[40] C-level Fine-tuned
[51] B-level Fine-tuned
[52] A-level Fine-tuned
[53] D-level Fine-tuned
[48] B-level Fine-tuned

Convolution Batch 
Normalization Max-pooling Fully connected

64

128

128

AU 
Probabilities

...

Fig. 1: Overview of the deep network used for within-
domain and cross-domain experiments.

that represent different domains. The deep approach is a
CNN architecture [54]; the shallow approach is a support
vector machine (SVM) with hand-crafted features. One
database used for training is an expanded version of BP4D+
[6] (which we refer to as EB+). The other is GFT [7]. As
noted above, they differ in context (emotion induction by
an experimenter versus a group formation task of multi-
ple participants), individual differences among participants,
non-rigid head motion, video resolution, composition of
the FACS coding teams, and other factors. Both databases
are well annotated and relatively large (200 participants
and 395K frames in EB+ and 150 participants and 517K
frames in GFT). To ensure comparability between deep and
shallow approaches, the same video frames and train and
test assignments were used for both.

For the CNN, we report both within- and cross domain
AU-specific results for both databases. For the shallow ap-
proach (Openface), we report cross-domain results to GFT
but not to EB+. Because the release version of Openface was
trained in part on BP4D, domain transfer to EB+ would be
confounded by domain contamination. Preprocessing steps
and AU detection methods of both the CNN and Openface
are described below.

3.1 Deep Approach: Convolutional Neural Network

3.1.1 Face tracking and registration
Video was tracked and normalized using ZFace [55], a real-
time face alignment software that accomplishes dense 3D
registration from 2D videos and images without requiring
person-specific training. Face images were normalized in
terms of rotation and scale and then centred, scaled, and
normalized to the average interocular distance (IOD) of the
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participants, which is about 80 pixels. After this step we
obtain 200⇥ 200 pixel image of faces with 80 pixels IOD.

3.1.2 Video-specific normalization
Faces vary markedly in geometry and appearance among
people. Such differences are a potential source of error when
models that have been trained on diverse faces are applied
to those of faces that differ from them in face shape and
appearance. To control for these individual differences in
facial morphology, person-specific normalization has been
proposed [39] and found to contribute to improved AU de-
tection. Following this previous work, we included person-
specific normalization in our pipeline. For each video frame,
we subtracted the mean face shape and appearance of the
video from which it came.

3.1.3 AU Detection
We trained a convolutional neural network (CNN) con-
taining three convolutional layers and two fully connected
layers (see Fig. 1). Frames obtained after video-specific
normalization are converted into grayscale images and fed
as inputs to the network. We employ 64, 128, and 128 filters
of 5⇥5 pixels in three convolutional layers with a stride of 2,
1 and 1, respectively. After convolution, rectified linear unit
(ReLU) is applied to the output of the convolutional layers
in order to add non-linearity to the model. We apply batch
normalization to the outputs of all convolutional layers.
The network contains three max-pooling layers that are
applied after batch normalization. We apply max-pooling
with a 2 ⇥ 2 window such that the output of max-pooling
layer is downsampled with a factor of 2. Output of the last
maxpooling layer is connected to the fully connected layer
of size 400. Finally, the output of first fully connected layer
is connected to the final layer having N = 12 neurons. A
sigmoid activation function is used at the output of final
dense layer for non-linearity1.

Because we perform multi-label AU detection, we use
binary cross-entropy loss as follows:

L =
NX

n=1

[yn · log yn + (1� yn) · log(1� yn)] . (1)

Values obtained at the output neurons are between [0,1],
corresponding to the probability of 12 AUs. During test
time, we assign the positive AU occurrence label to the
instances with probability above a threshold. For within-
domain experiments, threshold is 0.5. For cross-domain ex-
periments, we optimize the threshold on the source domain
using 5-fold cross validation. We identified the optimal
threshold as the one giving the maximum performance
averaged over all folds and use that optimal threshold while
testing the model on the target domain.

3.2 Shallow Approach: Openface
OpenFace [10] is a state-of-the-art tool using a shallow ap-
proach for facial action unit detection. It uses Convolutional
Experts Constrained Local Model (CE-CLM) [56] for facial
landmark detection and tracking. It employs HOG features
extracted from similarity aligned 112⇥112 pixel face images

1. http://www.jeffcohn.net/resources/AFAR/

and facial shape features for AU detection. It performs
person-specific normalization, in which the median frame
of a video is subtracted from all frames of the video, and
prediction correction. It uses a linear kernel SVM for AU
detection. Output of AU detection module of Openface is
0/1 label for absence/presence of each AU in each frame.

4 EXPERIMENTS

4.1 Databases
We performed experiments with four well-annotated
databases, namely EB+, GFT, DISFA and SP that differ
in size, context, resolution, pose, and participant diversity
among other factors (see Fig. 2). While EB+ and GFT
databases are large in terms of the number of subjects,
DISFA and SP are much smaller. For that reason, we used
DISFA and SP databases only to test the classifiers to obtain
cross-domain results.

We considered using additional databases but they were
either publicly unavailable or unsuited for our study. RU-
FACS is not publicly available. In CK, CK+, MMI, GEMEP-
FERA only 1-3 frames are coded for each participant. Man-
ual annotations are obtained for a total of a few hundreds of
frames, which is not sufficient for training a deep model.
In addition, CK, GEMEP-FERA and subsets of CK+ and
MMI databases are posed, in which facial behavior was
deliberate. SEMAINE has labels for only three AUs in our
set. Since the remaining annotations are lacking and we use
multi-label classification to make use of AU correlations, we
did not include SEMAINE in our experiments.

GFT [7] involves social interaction among 50 groups
of three previously unacquainted young adults (150 par-
ticipants in all). A third of the groups drink an alcoholic
beverage; a third a placebo beverage they believe to contain
alcohol; and a third fruit juice. Alcohol effects are common
and have been reported previously [57], [58], [59]. EB+ is a
series of emotion inductions or tasks of a single participant
interacting with an experimenter, which elicits more intense
action units with different rates of occurrence. BP4D+ is
reported in [6]. DISFA involves participants alone in non-
social context while watching videos to elicit spontaneous
expressions. SP contains a series of active and passive range-
of-motion tests performed by participants that suffer from
shoulder pain. The focus is on the pain induction (move-
ment of the affected shoulder) rather than social interaction.
The databases differ as well in participant diversity, number
of AUs that occur and their frequency and co-occurrence,
range of head pose, non-rigid head motion, illumination,
and video resolution.

EB+ and GFT were manually annotated by different
teams of highly qualified, certified FACS coders from the
same lab at different times. Occurrence was defined as B
level or higher. We included 12 AUs that occurred in more
than 3% of the frames in both databases. That is, AU 1, AU
2, AU 4, AU 6, AU 7, AU 10, AU 12, AU 14, AU 15, AU
17, AU 23, and AU 24. Because Openface does not output
occurrence for AU 24, results for AU 24 are reported for the
CNN only. DISFA and SP were coded by different teams
of certified FACS coders. Occurrence in both DISFA and
SP indicates intensity of B or higher. DISFA and SP have
annotations for a smaller set of AUs. For DISFA, the set
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EB+ GFT DISFA SP

Fig. 2: Sample frames from different domains.

includes AU1, AU2, AU4, AU6 and AU12 while for SP, we
have annotations for AU4, AU6, AU7, AU10 and AU12.

Expanded BP4D+ (EB+)2 is a manually FACS annotated
database of spontaneous behavior. Video is 2D with reso-
lution of 1040 ⇥ 1392. Average video duration is around
44 seconds, while the average annotated video duration is
13 seconds. Well-designed tasks (e.g. interviews, physical
activities) initiated by an experimenter are used to elicit
varied emotions. Face orientation is nearly frontal and out-
of-plane head rotation is limited. It contains videos from
a total of 200 subjects (140 subjects from BP4D+ [6], 60
additional subjects) associated with 5 to 8 tasks. We use a
total of 1216 number of videos having a total of 395K frames.
Positive samples are defined as the ones with intensities
equal to or higher than B-level, and the remaining ones are
negative samples.

GFT3 [7] is a manually FACS annotated database of
spontaneous behavior in 150 young adults in three-person
groups. Behavior is unscripted and each video is approxi-
mately 2min in duration (approximately 517K frames in all).
Video resolution is 720 ⇥ 480. Moderate out-of-plane head
motion is frequent and occlusion is common, making AU
detection more challenging. Positive samples are defined as
ones with intensities equal to or higher than B-level, and the
remaining ones are negative samples.

DISFA [8] is a database of spontaneous behavior in 27
adults (12 women, 15 men). It is manually annotated for AU
intensity from 0 to E-level. Participants watched a video clip
consisting of 9 segments intended to elicit a range of facial
expressions of emotion. Video resolution is 1024⇥ 768. Face
orientation is nearly frontal. For each participant, 4845 video
frames were recorded. We use a total of 130K frames in our
experiments. Positive samples are defined as the ones with
intensities equal to or higher than B-level, and the remaining
ones are negative samples.

UNBC Shoulder Pain Archive (SP) [9] is a manually
FACS annotated database. It contains 200 videos of 25 dif-
ferent patients having shoulder pain. Videos were recorded
while the patients performed different types of arm move-
ments. We use a total of 48K frames in our experiments.
Positive samples are defined as the ones with intensities
equal to or higher than B-level, and the remaining ones are
negative samples.

2. http://www.cs.binghamton.edu/⇠lijun/Research/3DFE/3DFE
Analysis.html

3. https://osf.io/7wcyz/

4.2 Settings

Database splits We perform both within-domain and cross-
domain experiments. In within-domain experiments, 5-fold
cross validation is used. For EB+, each fold consists of 160
subjects for training and tuning and 40 subjects for testing.
In GFT, each fold consists of 120 subjects for training and
tuning and 30 subjects for testing. In cross-domain experi-
ments, data from all subjects in the source domain is used
for training; and data from all subjects in the other domain
is used for testing.

Evaluation metrics Different metrics capture different
properties about the AU detection performance. Choices
of one or another metric depend on a number of factors,
including preferences of investigators, purposes of the task,
the nature of the data, etc. Following Girard and colleagues
[7], we report a variety of metrics: S score (free-margin
kappa), area under ROC curve (AUC), F1 and negative
agreement (NA).

F1 is the most commonly used metric in AU detection
literature. It is the harmonic mean of precision (P) and recall

(R)
2RP

R+ P
which is also equivalent to positive agreement

(PA)
2tp

2tp+ fp+ fn
when only two methods are compared

(e.g., CNN and manual AU coding). F1 can tell the perfor-
mance on correct predictions on positive samples.

Negative agreement (NA) is the complement of F1 and

is equal to
2tn

2tn+ fp+ fn
. It evaluates the solution by the

harmonic agreement of samples not including AUs.
Area under the Receiver Operating Characteristics

Curve (AUC) is equal to the probability that a classifier
will rank a randomly chosen frame in which AU is present
higher than a randomly chosen one in which AU is absent.
Therefore, this measure shows the success of classifier to
rank frames with and without AU. AUC was proven to
be better than the accuracy metrics for evaluating classifier
performance [60].

S score or free-marginal kappa coefficient is com-

puted as
2tp+ 2tn

tp+ fp+ fn+ tn
[7]. It provides an overall,

chance-adjusted summary statistic. It is equal to the ratio
of observed nonchance-agreement to possible nonchance-
agreement and it estimates chance agreement by assuming
that each category is equally likely to be chosen at random.

Many of the AUs occur infrequently (i.e., have low base
rates). S score and AUC are robust to imbalanced data while
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EB+

DISFA

GFT

SP

● 150 subjects
● 86% Caucasian, 45% 

female
● Age: 21 to 28 years
● 517K frames
● 720 × 480 pixels
● Out-of-plane motion
● Group formation task

● 200 subjects
● 50% Caucasian, 59% 

female
● Age: 18 to 66 years
● 395K frames
● 1040 x 1392 pixels
● Nearly frontal
● Induced emotion

● 27 subjects
● 78% Caucasian, 44% 

female
● 130K frames
● Age: 18 to 50 years
● 1024 x 768 pixels
● Nearly frontal
● Induced emotion

● 25 subjects
● 84% Caucasian, 52% 

female
● Age: 23 to 67 years
● 48K frames
● 320 x 240 pixels
● Nearly frontal
● Physical pain

Fig. 3: Overview of the databases used in our experiments.
Databases used for training (EB+ and GFT) are denoted with
circles having thicker boundaries. Source and target of an
arrow denote the database used for training and test, re-
spectively. Self loops represent within-domain experiments.
Each database and its properties are denoted with a specific
color. Graphs in the corners show the respective base rates
of AUs.

F1 and NA are not [61], which should be taken into account
when evaluating results for AUs occur infrequently.

Network and training settings We trained CNNs with
batches of 100 samples. We chose stochastic gradient descent
optimizer with a learning rate of 1e-3 and a momentum
of 0.9 for better generalizability to unseen domains. Our
implementation is based on the PyTorch and we performed
all experiments on NVidia 1080ti GPU.

4.3 AU Detection Results
We first report within-domain and cross-domain AU de-
tection results for the deep models trained on EB+ and
GFT, separately. Databases used as training or test set in
within-domain and cross-domain experiments can be seen
in Fig. 3. Then, we compare cross-domain results between
CNN and Openface, which affords a comparison between
a deep (CNN) and shallow (Openface) approach. For the
comparisons between within-domain & cross-domain and
deep & shallow, we performed significance tests in given
Table 6. For each set of comparisons we controlled for Type
I error using Bonferroni correction. With experiment-wise
error of 0.05 and 2 ⇤ 12 = 24 comparisons in each set, a p of
0.002 is the critical value for significance.

4.3.1 Within-domain and cross-domain results of deep
model trained on EB+
Table 3 shows AU-specific results obtained by the deep
model trained on EB+ database. While Table 3a shows
within-domain results, Table 3b, Table 3c, and Table 3d show
cross-domain results on GFT, DISFA, and SP databases,
respectively. Contrary to the studies performing fine-tuning

on the new domain, we directly test the models on new
domains to infer generalizability.

Imbalanced classes are evident in all of the databases.
In EB+, seven of 12 AUs occur in fewer than 15 percent
of frames. In GFT, five of 12 AUs occur in fewer than 15
percent of frames. In DISFA and SP, none of the AUs occur
in more than 15 percent of frames. This level of skew means
fewer positive examples available for training and testing
and decreases the range of F1 scores in particular [61].

Average F1 score in EB+ is in the moderate range. Differ-
ences in the individual AU performances are present, which
are related to base rates of AUs. For AUs that occur in more
than 15 percent of the frames, F1 scores are far better (0.75
to 0.88). The same pattern as found for F1 is found for AUC.
AUC is higher for AUs that occur in more than 15 percent of
the frames. The effect of base rate is likely due to the greater
challenge of learning AUs that occur less frequently. S scores
(free-margin kappa) range from moderate to high. Most but
not all S scores are within the range that is acceptable for
observational research in psychology where kappa scores
of 0.7 are expected. These findings are consistent with the
hypothesis that AUs can be reliably detected within the
same domains in which they were trained.

A critical question is whether AU-detectors generalize to
new domains. When we compare within-domain results in
Table 3a and cross-domain results on GFT in Table 3b, we
observe a decrease in average cross-domain results. Average
AUC and F1 values are 0.729 and 0.599 for within EB+
(see Table 3a) while they are 0.658 and 0.443 for cross-
domain results on GFT (see Table 3b). Therefore, we observe
decrease of 0.071 and 0.156 for AUC and F1, respectively. For
each individual AU, there is a degradation in S score, AUC,
F1 and NA values. Significance results in Table 6 shows that
within-domain results are significantly better for all AUs
than cross-domain results on GFT.

When we compare within-domain results in Table 3a
with cross-domain results on DISFA in Table 3c, we observe
an increase in S, AUC, F1 and NA for AU1, AU2 and AU4.
For these AUs, the classifier generalizes better to a new
domain. A reason for better cross-domain results on DISFA
may be that variation is limited in terms of pose, illumina-
tion and ethnicity. i) Limited variation (mostly Caucasian
and young adults) in DISFA compared to larger variation
in terms of ethnicity and age in EB+ ii) higher base rate
of AU4 (0.15) compared to the base rate of EB+ (0.07) and
iii) lack of pose in DISFA may be the potential reasons
for better generalization. On the other hand, for AU6 and
AU12 we observe a decrease in S, AUC and F1 in cross-
domain results. The difference is only significant for AU12
(see Table 6). Average within-domain F1 value computed
over AU1, AU2, AU4, AU6 and AU12 is 0.626, which is
11 percent higher than average cross-domain F1 value on
DISFA. Cross-domain results on DISFA are generally better
when NA is used. Similar to F1, NA is affected by the skew
in the data and base rates of all AUs are very low for DISFA.
In other words, negative samples greatly outnumber the
positive ones and such imbalance may lead to larger NA.

Cross-domain results on SP in Table 3d are much smaller
than within-domain results in Table 3a. For all AUs, we
observe a decrease in AUC and F1 values. Only for AU1
and AU2, cross-domain results are better for S score and NA.
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TABLE 3: Within-domain and cross-domain AU detection results (EB+).

(a) Within-domain: EB+

- Base rate S AUC F1 NA

AU1 0.09 0.787 0.670 0.468 0.941
AU2 0.07 0.856 0.659 0.437 0.961
AU4 0.07 0.873 0.690 0.526 0.966
AU6 0.43 0.685 0.839 0.821 0.859
AU7 0.63 0.646 0.811 0.864 0.748
AU10 0.59 0.713 0.846 0.881 0.820
AU12 0.53 0.736 0.867 0.876 0.858
AU14 0.42 0.566 0.779 0.749 0.809
AU15 0.10 0.776 0.656 0.408 0.938
AU17 0.14 0.643 0.601 0.344 0.897
AU23 0.14 0.722 0.736 0.569 0.917
AU24 0.03 0.943 0.595 0.245 0.986

Average
12 AUs 0.27 0.745 0.729 0.599 0.892

(b) Cross-domain: EB+ → GFT

- Base rate S AUC F1 NA

AU1 0.09 0.741 0.588 0.258 0.929
AU2 0.12 0.597 0.640 0.338 0.881
AU4 0.04 0.817 0.607 0.180 0.952
AU6 0.33 0.562 0.769 0.688 0.832
AU7 0.42 0.251 0.661 0.666 0.573
AU10 0.41 0.490 0.760 0.728 0.759
AU12 0.33 0.541 0.784 0.703 0.813
AU14 0.43 0.083 0.584 0.621 0.420
AU15 0.18 0.314 0.582 0.324 0.770
AU17 0.17 0.219 0.601 0.334 0.724
AU23 0.12 0.669 0.671 0.248 0.907
AU24 0.07 0.533 0.648 0.231 0.862

Average
12 AUs 0.22 0.485 0.658 0.443 0.785

(c) Cross-domain: EB+ →DISFA

- Base rate S AUC F1 NA

AU1 0.05 0.916 0.770 0.571 0.978
AU2 0.04 0.905 0.759 0.499 0.975
AU4 0.15 0.800 0.743 0.612 0.943
AU6 0.08 0.660 0.801 0.416 0.901
AU12 0.12 0.375 0.807 0.444 0.783

Average 0.14 0.731 0.776 0.508 0.916

(d) Cross-domain: EB+ → SP

- Base rate S AUC F1 NA

AU4 0.02 0.920 0.616 0.222 0.980
AU6 0.11 0.700 0.633 0.350 0.915
AU7 0.07 0.290 0.599 0.176 0.774
AU10 0.01 0.622 0.801 0.083 0.895
AU12 0.14 0.594 0.668 0.406 0.878

Average 0.07 0.625 0.663 0.247 0.888

TABLE 4: Within-domain and cross-domain AU detection results (GFT).

(a) Within-domain: GFT

- Base rate S AUC F1 NA

AU1 0.09 0.827 0.672 0.437 0.953
AU2 0.12 0.770 0.677 0.449 0.935
AU4 0.04 0.928 0.560 0.198 0.982
AU6 0.33 0.679 0.810 0.746 0.882
AU7 0.42 0.525 0.762 0.721 0.791
AU10 0.41 0.621 0.803 0.765 0.840
AU12 0.33 0.744 0.849 0.798 0.905
AU14 0.43 0.249 0.602 0.500 0.691
AU15 0.18 0.580 0.602 0.339 0.875
AU17 0.17 0.639 0.537 0.170 0.898
AU23 0.12 0.737 0.543 0.168 0.928
AU24 0.07 0.853 0.535 0.129 0.962

Average
12 AUs 0.22 0.679 0.663 0.452 0.887

(b) Cross-domain: GFT → EB+

- Base rate S AUC F1 NA

AU1 0.09 0.743 0.630 0.312 0.929
AU2 0.07 0.844 0.573 0.224 0.959
AU4 0.07 0.855 0.559 0.204 0.962
AU6 0.43 0.369 0.662 0.577 0.749
AU7 0.63 0.269 0.645 0.678 0.578
AU10 0.59 0.469 0.733 0.767 0.692
AU12 0.53 0.532 0.771 0.757 0.774
AU14 0.42 0.235 0.638 0.631 0.602
AU15 0.10 0.651 0.599 0.268 0.901
AU17 0.14 0.377 0.621 0.302 0.799
AU23 0.14 0.254 0.616 0.320 0.743
AU24 0.03 0.734 0.639 0.135 0.928

Average
12 AUs 0.27 0.528 0.637 0.431 0.801

(c) Cross-domain: GFT → DISFA

- Base rate S AUC F1 NA

AU1 0.05 0.818 0.733 0.370 0.951
AU2 0.04 0.832 0.762 0.379 0.955
AU4 0.15 0.794 0.701 0.553 0.942
AU6 0.08 0.688 0.867 0.475 0.908
AU12 0.12 0.698 0.902 0.624 0.906

Average 0.14 0.766 0.793 0.480 0.932

(d) Cross-domain: GFT → SP

- Base rate S AUC F1 NA

AU4 0.02 0.904 0.545 0.099 0.975
AU6 0.11 0.418 0.566 0.209 0.822
AU7 0.07 -0.328 0.590 0.151 0.454
AU10 0.01 0.113 0.425 0.016 0.714
AU12 0.14 0.679 0.534 0.164 0.911

Average 0.07 0.357 0.529 0.128 0.775



9

TABLE 5: Deep and shallow cross-domain results on GFT

(a) Deep model

- S AUC F1 NA

AU1 0.741 0.588 0.258 0.929
AU2 0.597 0.640 0.338 0.881
AU4 0.817 0.607 0.180 0.952
AU6 0.562 0.769 0.688 0.832
AU7 0.251 0.661 0.666 0.573
AU10 0.490 0.760 0.728 0.759
AU12 0.541 0.784 0.703 0.813
AU14 0.083 0.584 0.621 0.420
AU15 0.314 0.582 0.324 0.770
AU17 0.219 0.601 0.334 0.724
AU23 0.669 0.671 0.248 0.907

Average
11 AUs 0.480 0.659 0.463 0.778

(b) Shallow model

- S AUC F1 NA

AU1 0.658 0.701 0.373 0.901
AU2 0.579 0.689 0.386 0.873
AU4 0.636 0.565 0.102 0.899
AU6 0.489 0.761 0.676 0.789
AU7 0.306 0.645 0.589 0.699
AU10 0.510 0.769 0.738 0.770
AU12 0.472 0.779 0.694 0.768
AU14 0.040 0.565 0.610 0.376
AU15 0.412 0.584 0.323 0.812
AU17 0.408 0.610 0.346 0.809
AU23 0.305 0.519 0.196 0.778

Average
11 AUs 0.438 0.653 0.458 0.770

TABLE 6: Significance of differences between classifiers by t-test. * is p < 0.05, ** is p < 0.01, *** is p < 0.001. The latter are
significant after correcting for multiple comparisons. n.s. denotes not significant. For the shaded cell cross-domain results
are greater than within-domain or shallow is greater than deep.

-
Within EB+

>
Within GFT

Within EB+
>

EB+ to GFT

Within EB+
>

EB+ to DISFA

Within EB+
>

EB+ to SP

Within GFT
>

GFT to EB+

Within GFT
>

GFT to DISFA

Within GFT
>

GFT to SP

Deep
>

Shallow

AU S AUC S AUC S AUC S AUC S AUC S AUC S AUC S AUC

1 n.s. n.s. *** *** n.s. *** - - *** *** n.s. n.s. n.a - *** ***
2 *** n.s. *** n.s. n.s. *** - - * *** n.s. *** - - n.s. n.s.
4 n.s. *** ** *** n.s. *** n.s. n.s. *** n.s. ** *** n.s. n.s. *** ***
6 n.s. ** *** *** n.s *** n.s. *** *** *** n.s. ** *** *** ** **
7 *** * *** *** - - *** *** *** *** - - *** *** n.s. n.s.
10 *** *** *** *** - - n.s. n.s. *** *** - - *** *** n.s. n.s.
12 n.s. n.s. *** *** *** ** *** *** *** *** n.s. ** *** *** n.s. n.s.
14 *** *** *** *** - - - - n.s. ** - - - - * n.s.
15 *** n.s. *** n.s. - - - - ** *** - - - - *** n.s.
17 *** *** *** n.s. - - - - *** *** - - - - *** ***
23 *** *** *** *** - - n.a - *** *** - - - - *** ***
24 *** n.s. *** *** - - - - n.s. n.s. - - - - - -

On average, cross-domain results (0.663 AUC and 0.247 F1)
are much worse than average within-domain results (0.810
AUC and 0.793 F1).

4.3.2 Within-domain and cross-domain results of deep
model trained on GFT
Table 4 shows AU-specific results obtained by the deep
model trained on GFT. While Table 4a shows within-domain
results, Table 4b, Table 4c, and Table 4d show cross-domain
results on EB+, DISFA, and SP, respectively.

Within-domain average F1 score is in the moderate
range. For AUs that occur in more than 20 percent of the
frames, F1 scores and AUC values are much better. When
we compare within-domain results on EB+ in Table 3a
and within-domain results on GFT in Table 4a, we observe
that F1 scores and AUCs are higher in EB+ than in GFT.
Similar to the model trained on EB+, S scores obtained with
the model trained on GFT range from moderate to high.
Although S scores show a less consistent relation to base
rate, they show the same difference between EB+ and GFT.
Results for GFT in Table 4a are generally worse than those
for EB+ in Table 3a. Significance results in Table 6 reveal
that, within-domain results on EB+ database is significantly
better for 8 of the 12 AUs when S scores are compared and
for 7 of the 12 AUs when AUC values are compared. For
AU 6 and AU 12, within-domain results of both databases
are similarly good. These findings suggest that EB+ is an

easier database compared to GFT for AU detection. Sources
of variation need to be better understood.

After analyzing within-domain results, we compare
whether AU-detector trained on GFT generalizes to other
domains. We observe a decrease in average cross-domain
results for EB+ in Table 4b. Although the decrease in average
F1 score and AUC is slight, it is large in S scores and NA
values. Significance results in Table 6 show that, within-
domain results on GFT database is significantly better for
8 of the 12 AUs when S scores are compared and for 7
of the 12 AUs when AUC values are compared. When S
scores are compared, cross-domain results are significantly
better than within-domain results for AU2 and AU15. When
AUC values are compared, for AU14, AU17 and AU23 cross-
domain results are significantly better.

When we compare within-domain results in Table 4a
with cross-domain results on DISFA in Table 4c, we observe
an increase in F1 only for AU4. For the remaining AUs, F1
values are lower and average F1 is 0.48, which is 4 percent
lower than the average F1 score obtained over AU1, AU2,
AU4, AU6 and AU12. On the other hand, cross-domain
AUC values are high and are larger than within-domain
AUC values for all AUs. Recall that, cross-domain AUC
results from EB+ → DISFA in Table 3c are also larger than
within-domain AUC results for most of the AUs. These
findings suggest that classifiers trained on other domains
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may generalize well to DISFA.
On the other hand, a comparison of within-domain

results in Table 4a and cross-domain results on SP in Table
4d yields a large decrease in S, AUC and F1 values for
all AUs. Decrease in average AUC and F1 computed over
AU4, AU6, AU7, AU10 and AU12 are 0.227 and 0.517,
respectively. For all AUs except for AU4, within-domain
results are significantly better than cross-domain results
when both S score and AUC are used. These results show
that neither the model trained on EB+ nor the one trained
on GFT generalizes well to SP database.

When we compare how the model trained on EB+ and
the one trained on GFT generalizes on DISFA and SP, we
observe that F1 results are consistently better and AUC
results are generally better for the model trained on EB+
(Table 3c and Table 3d) than the one trained on GFT (Table
4c and Table 4d). CNNs trained on EB+ generalize better to
unseen domains rather than the ones trained on GFT.

While in previous analyses we compare results within
the same domain to results on other domains, it is important
also to consider the expected best result for the new domain.
When we look at average within-domain results on GFT
in Table 4a, we observe that average F1 score is 0.452,
which can be considered as the upper limit expected for
GFT. When we test GFT with the model trained on EB+ in
Table 3b, we observe an average F1 score of 0.443, which is
very close to the expected best F1 score for GFT. Therefore,
when tested on GFT, performance of the model trained on
EB+ is nearly as good as the model trained within GFT.
These results suggest that, in addition to the differences in
domains, difficulty of domains (within-domain performance
which may be considered as the expected upper limit for a
domain) may also be another factor for the degradation in
the performance in cross-domain experiments. If the target
domain has low within-domain performance (as in GFT),
decrease in the cross-domain performance from source do-
main to target (from EB+ to GFT) domain is likely.

4.3.3 Cross-domain comparison of deep and shallow mod-
els
We report cross-domain results with deep and shallow ap-
proaches on GFT. Training set of current release of Openface
contains BP4D, whose tasks, base rates of AUs, pose and
illumination conditions are the same with EB+. Therefore,
we do not report test results using Openface with EB+
since it would not correspond to a cross-domain experiment.
Similarly, as the training set of Openface includes DISFA
and SP databases, we do not report cross-domain results on
these databases.

Since we report AU specific detection results and test
both models on the same domain, we can directly compare
AU detection results of deep and shallow approaches. By
comparing Table 5a with Table 5b we can infer that, deep
model gives slightly better S score, F1, AUC and NA on
average. When we analyze F1s for individual AUs, deep
approach outperforms shallow one in all AUs except for
AU1, AU2, AU10 and AU17. AUC values of deep approach
are significantly (p < 0.05) better than the ones obtained
with shallow approach for AU4, AU6 and AU23. For the
AUs with high baserates, both deep and shallow approaches
perform similarly. S values of AUs obtained with deep

Acc.

Acc.

Acc.

Fig. 4: Overview of generating occlusion sensitivity maps
from accuracy values of occluded images. Note that patches
are slid over the images after video-specific normalization.

approach are generally better and they are significantly
better than shallow approach for AU 1, AU 4, AU 6, AU 14,
and AU 23 (see Table 6). Notice that, these conclusions are
drawn when the models are trained with large databases.
Results may be different when small databases are used.

If we would only report AUC values as in [33], or
F1s as in [36], [38], [39], we would infer that deep and
shallow approaches perform similar for cross-domain ex-
periments. With a comparison of only S score values, we
would conclude that deep approach is slightly better. Since
we report results with all the measures for both approaches,
we can interpret that, deep approach ranks instances with
AUs present or absent similar to shallow approach, both
deep and shallow approaches perform similar on positive
instances and when the effect of chance is discarded, deep
approach performs slightly better.

4.4 Visualizing AU-specific significant regions
A natural question is whether the classifier looks at expected
regions to detect the related action units (e.g., nasal root
for AU 4) in within-domain and cross-domain experiments.
Given the co-occurring nature of AUs in spontaneous be-
havior, important regions may not be trivial. To answer this
question we systematically occlude different portions of the
input and monitor the output of the classifier. Note that, our
goal is not to understand whether our model is robust to
occlusion. Instead, we use occlusion as a way to infer the
significant facial regions the classifier is looking at to detect
specific AUs.

In order to interpret the facial regions that cause the
largest decrease in the accuracy when occluded, we generate
occlusion sensitivity maps [62], [63] and visualize them for
different AUs. For each AU, we randomly select 1000 images
that contain the specified AU and are classified correctly by
the model (true positives). We define a patch having size
15 ⇥ 15 whose pixel values are 0 (having black color). We
first overlay the patch onto top-left corners of the 1000 input
images. We test these occluded images with the same model
and obtain accuracy value for the top-left position of the
patch. We write the obtained accuracy value to the center
pixel of the patch in the occlusion sensitivity map as shown
in Fig. 4. We slide the patch over the image of size 200⇥200
with a stride 2 and repeat the same steps. In the end, we
obtain accuracy values for 92 ⇥ 92 different positions of
the patch. After an interpolation step, the resulting grids of
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AU1 AU2 AU4 AU6 AU7 AU10

AU12 AU14 AU15 AU17 AU23 AU24

Fig. 5: Occlusion sensitivity maps (Within-domain: EB+).

AU1 AU2 AU4 AU6 AU7 AU10

AU12 AU14 AU15 AU17 AU23 AU24

Fig. 6: Occlusion sensitivity maps (Cross-domain: GFT →EB+).

accuracy values yield occlusion sensitivity maps. We show
occlusion sensitivity maps of within-domain experiment on
EB+ in Fig. 5 and cross-domain experiment (GFT →EB+)
in Fig. 6. In occlusion sensitivity maps, darker red colors
represent the lowest accuracy of correctly estimating oc-
cluded positive samples while darker blue colors represent
the parts, whose occlusion do not affect the accuracy a lot.
Significant regions for each AU are the ones colored with
red, whose occlusion by a patch leads to a great decrease
in the accuracy. We use these maps to understand 1) if our
models look to anticipated facial regions to when detecting
AUs; 2) if our models learn the co-occurrence relationship
between AUs; and 3) how these maps differ for within- and
cross-domain comparisons.

In Fig. 5, for most of the AUs, the model learns where to
look at the input to detect the specific AU correctly. For AU1,
AU2 the most important regions are around eyes, eyebrows
and forehead while for AU4 inner brow regions and eyes are
significant. For AU12, AU14 and AU15, the classifier mainly
looks at a long and narrow region around mouth and lip
corners, while for AU17, AU23 and AU24 the significant
regions are more local around mouth and chin. For AU6 and
AU7 in addition to the eye region, the classifier also looks at
mouth region due to the co-occurring nature of AUs.

When we compare occlusion sensitivity maps of cross-

domain (Fig. 6) and within-domain (Fig. 5) experiments, we
observe that significant regions in maps of within-domain
experiments are more local while they are more distributed
in the maps of cross-domain experiments. Since moderate-
to-large head pose is present in the training domain GFT,
and due to the domain differences between EB+ and GFT,
the model looks at larger regions to detect specific AUs as
expected. For example, the model trained on EB+ looks
mainly around eye and eyebrow regions to detect AU1
when it is tested with frames from the same domain. On the
other hand, the model trained on GFT uses the information
around mouth patch in addition to eye and eyebrow regions
to detect AU1 when it is tested with frames from EB+.

5 DISCUSSION AND FUTURE WORK

The future impact of AU detectors hinges on their abil-
ity to generalize from domains in which they have been
trained to ones in which they have not. How well they
generalize until now is an open question. We found that
relevant studies failed to report AU-specific results; frus-
trated comparison with previous work by using different
numbers of subjects or frames; lacked comparisons with
one or more approaches; and failed to report sufficient
test statistics to quantify different aspects of performance.



12

Without comparability across methods, domains, and test
statistics, inferences about generalizabilty remain limited.

From our review, we recommend that investigators use
comparable subjects and frames and report AU-specific
results using multiple measures that quantify varied aspects
of performance. We recommend S score, AUC, F1, and NA
on all available frames of the domain. Other investigators
may recommend additional metrics. With these recommen-
dations, within- and cross-domain results can be rigorously
compared within and between AU-detection approaches.

In line with these recommendations, we performed
cross-domain experiments using both a deep and a shal-
low approach using two large, well-annotated databases,
namely EB+ and GFT, that differ from each other in key
respects. Additional databases were initially considered
(Bosphorus, BP4D, DISFA, SEMAINE, FERA, UNBC and
CK+), but all had been used in training the shallow ap-
proach (OpenFace) we used. To control for experiment-wise
error in statistical tests, we used Bonferroni correction.

In both deep and shallow approaches, we sought to
maximize generalizability. For instance, we used video-
specific normalization to reduce individual differences in
appearance. In the deep approach we used stochastic gradi-
ent descent, which has been shown to provide better gen-
eralizability to unseen domains. Even with such efforts, our
results reflect that AU detectors that perform well within
the same domain perform less well on new domains. In
many cases performance decreased to below the threshold
acceptable for behavioral research.

Within-domain results on EB+ are better than those on
GFT. Because EB+ has higher AU base rates, nearly frontal
faces, and higher resolution, which may better capture sub-
tle details, it may be an easier database to detect AUs. Larger
pose variation, lower AU base rates and the lower resolution
of GFT may make AU detection more difficult.

Models trained on EB+ or GFT performed more poorly
when applied to new domains. Reasons may include dif-
ferences between domains in AU base rates, demographics
(age, gender, and ethnicity), camera view (frontal or out-of-
plane), video resolution, illumination, and context (induced
emotion, physical pain, or group formation).

While cross-domain attenuation was common, general-
ization to some domains was better than that to others.
Classifiers trained on EB+ or GFT generalized better to
DISFA than to SP. Unlike EB+ and GFT, SP included tasks
for physical pain and the correlation among AUs differs
from that of the other databases. Also, participants in SP are
older (average age = 49), and video resolution and AU base
rates are all lower than in other domains. Participants in
DISFA are young adults more similar in age to the subjects
in EB+ (average age = 20.5) and in GFT (average age =
22.3), and DISFA has much higher resolution than SP. These
differences in age range, AU base rates and video resolution
may be key to the lower generalizability to SP.

We explored cross-domain generalizability using four
well-annotated databases that differ in context, variation
in head pose, illumination, age, gender, ethnicity, AU base
rates, and resolution. Since these aspects could not be varied
systematically with the given databases, we could only infer
the reasons for decrease in the cross-domain performance.
Such a systematic evaluation would require posed data, rep-

resentative sampling of different racial groups, and a wide
range of ages, illumination, and other parameters. These
video then would need well-annotated AU annotation, ide-
ally from multiple teams so that annotator variability might
be considered. Future work could focus on collecting such
databases and then systematically varying these aspects to
see their effect on the detection performance of specific AUs.

We used CNN architecture given in Fig. 1 in our experi-
ments since it has been shown to perform well and provide
meaningful results in a cross-domain setting [54]. One of the
limitations of our work is, we do not know whether a deeper
CNN would perform better. However, in a recent work,
Niinuma et al. [64] used a deeper network (VGG16) with
a range of parameter settings. They reported cross-domain
results on DISFA and for some AUs our cross-domain
results are better. They also observe a decrease in cross-
domain setting compared to within-domain results. We do
not believe that results will be fundamentally different for
other architectures. Yet, this remains to be tested.

We included as many databases as possible, used a range
of test statistics and both deep and shallow approaches to
answer the question about domain transfer. Given the lack
of AU specific results and heterogeneity of metrics and
database splits in the existing work, we cannot compare
our results with the state-of-the-art. For example, we have
reported test results on GFT for all of the 150 subjects and
Chu et al. [36] reported results on GFT for 50 subjects.
Moreover, we cannot compare our results on DISFA with
the results reported in i) [40] since they finetuned their
models on DISFA, ii) [39] since they use A-level thresholding
contrary to recent common practice of B-level thresholding,
and iii) [41] since they subsampled frames and did not use
all frames to test their models. Therefore, we cannot answer
how well our model generalizes compared to the state-of-
the-art approaches, which is a limitation of our work.

Commercial systems, including iMotions, Affectiva and
Noldus, profess to recognize AU and facial expressions.
Considering the relatively low cross-domain generalizabil-
ity of the state-of-the-art, we urge caution in applying such
systems to new domains. Use in new domains should first
be validated on a subset of manually annotated video. If sys-
tems fail this validation step, re-training is recommended.
This is not possible with current commercial systems but is
an option with OpenFace and the CNN used here.

All machine learning methods, whether shallow or deep,
implicitly assume that representations and classifiers are
drawn from the same domains [65]. When this assumption
is violated, additional learning is required. Domain adapta-
tion approaches for AU detection would be indicated.
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